冠状病毒资源 艾滋病毒资源 流感病毒 hepatitis B hepatitis C EBV HPV HTLV-1 病毒数据库

=======
软件汇总
=======
========
数据汇总
========
=======
论文汇总
=======
========
视频教程
========
=========
我们的进展
=========
===========
小组成员入口
===========

冠状病毒相关论文 系统发育动力学 抗病毒药物设计 计算机辅助疫苗设计  

 

一般文献

 

第二批文献

 

中和抗体专题

 

人工智能辅助药物设计

 

JBSD papers


1.Application of Artificial Intelligence in COVID-19 drug repurposing. Diabetes & metabolic syndrome. 2020.7: DOI:10.1016/j.dsx.2020.06.068

2. Rethinking drug design in the artificial intelligence era. NATURE REVIEWS DRUG DISCOVERY. 2020.6: DOI: 10.1038/s41573-019-0050-3

3. Artificial intelligence in chemistry and drug design.JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN. 2020.7

4. The power of deep learning to ligand-based novel drug discovery. EXPERT OPINION ON DRUG DISCOVERY. 2020.5 : DOI: 10.1080/17460441.2020.1745183

5. AI-aided design of novel targeted covalent inhibitors against SARS-CoV-2. bioRxiv : the preprint server for biology: DOI:10.1101/2020.03.03.972133

6.6 Deep Learning in Drug Discovery. MOLECULAR INFORMATICS.2016.1: DOI: 10.1002/minf.201501008

7. The rise of deep learning in drug discovery. DRUG DISCOVERY TODAY. 2018.6: DOI: 10.1016/j.drudis.2018.01.039

8. Deep Docking: A Deep Learning Platform for Augmentation of Structure Based Drug Discovery. ACS CENTRAL SCIENCE. 2020.6:

9. Deep Learning Based Drug Screening for Novel Coronavirus 2019-nCov. INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES. 2020.6

10. Graph convolutional networks for computational drug development and discovery. BRIEFINGS IN BIOINFORMATICS.

11. Machine learning in chemoinformatics and drug discovery. DRUG DISCOVERY TODAY. 2018.8:

12. Exploiting machine learning for end-to-end drug discovery and development. NATURE MATERIALS. 2019.5: DOI: 10.1038/s41563-019-0338-z

13. Applications of machine learning in drug discovery and development. NATURE REVIEWS DRUG DISCOVERY. 2019.6: DOI: 10.1038/s41573-019-0024-5

14. Deep learning in drug discovery: opportunities, challenges and future prospects. DRUG DISCOVERY TODAY. 2019.10: DOI: 10.1016/j.drudis.2019.07.006

15. SyntaLinker: automatic fragment linking with deep conditional transformer neural networks. Chemical Science. 2020.7.

我们的研究重点

我们以S蛋白为研究重点,以冠状病毒中和抗体筛选为主要探索方向。

上海市浦东新区沪城环路999号