====
论文
====

======
Python
=====
=

=========
Tensorflow
=========

=======
PyTorch
=======

=====
Keras
=====

====
专题
====

====
链接
====

====
视频

====

=======
药物设计

=======

=======
材料科学
=======

============
经济学与金融学
==========
==



药物设计论文


返回

药物-蛋白质亲和力预测 药物-靶标相互作用预测 药物重定向 分子性质预测 蛋白质-蛋白质亲和力预测
药物代谢 药物毒理学 药物安全 抗原表位预测 药物-药物相互作用预测
基于配体的从头药物设计 基于受体的从头药物设计 药物知识图谱 药物-靶标的分子对接 分子逆合成设计
AI分子生成 抗体药物发现 免疫治疗(含CAR-T) 制药公司论文 AI4Drug-Papers

药物-蛋白质亲和力预测

1 Hierarchical graph representation learning for the prediction of drug-target binding affinity. INFORMATION SCIENCES. 2022 pdf
2 BridgeDPI: a novel Graph Neural Network for predicting drug-protein interactions. BIOINFORMATICS. 2022
3 BACPI: a bi-directional attention neural network for compound-protein interaction and binding affinity prediction. BIOINFORMATICS .2022
4 Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. CHEMICAL REVIEWS. 2022
5 DeepDTA: deep drug–target binding affinity prediction. Bioinformatics. 2018. Link
GitHub(含KIBA, Davis数据)
6 Co-VAE: Drug-Target Binding Affinity Prediction by Co-Regularized Variational Autoencoders. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. 2022
7 DeepDTA: deep drug-target binding affinity prediction. Bioinformatics. 2018 Link
8 MultiscaleDTA: A multiscale-based method with a self-attention mechanism for drug-target binding affinity prediction. Methods. 2022 pdf
9 GSAML-DTA: An interpretable drug-target binding affinity prediction model based on graph neural networks with self-attention mechanism and mutual information. COMPUTERS IN BIOLOGY AND MEDICINE. 2022 pdf
10 Graph-sequence attention and transformer for predicting drug-target affinity. RSC ADVANCES 2022 Link
11 PLA-MoRe: A Protein-Ligand Binding Affinity Prediction Model via Comprehensive Molecular Representations. JOURNAL OF CHEMICAL INFORMATION AND MODELING. 2022
12 Sequence-based drug-target affinity prediction using weighted graph neural networks. BMC GENOMICS. 2022 Link
13 CSatDTA: Prediction of Drug-Target Binding Affinity Using Convolution Model with Self-Attention. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. 2022. pdf
14 MGraphDTA: deep multiscale graph neural network for explainable drug-target binding affinity prediction. CHEMICAL SCIENCE. Jan 19 2022. DOI 10.1039/d1sc05180f pdf 引用已经很多了
15 Prediction of protein-ligand binding affinity from sequencing data with interpretable machine learning. NATURE BIOTECHNOLOGY. 2022. pdf
16 GEFA: Early Fusion Approach in Drug-Target Affinity Prediction. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS. 2022
17 NerLTR-DTA: drug-target binding affinity prediction based on neighbor relationship and learning to rank. BIOINFORMATICS. 2022
18 ELECTRA-DTA: a new compound-protein binding affinity prediction model based on the contextualized sequence encoding. JOURNAL OF CHEMINFORMATICS. 2022 pdf
19 SAM-DTA: a sequence-agnostic model for drug-target binding affinity prediction.. BRIEFINGS IN BIOINFORMATICS. 2022
20 Predicting drug-target binding affinity through molecule representation block based on multi-head attention and skip connection. BRIEFINGS IN BIOINFORMATICS. 2022
21 DTITR: End-to-end drug-target binding affinity prediction with transformers. COMPUTERS IN BIOLOGY AND MEDICINE. 2022 pdf
GitHub
22 DeepDTA: deep drug-target binding affinity prediction. Bioinformatics. 2018. 309次引用. pdf
23 GSAML-DTA: An interpretable drug-target binding affinity prediction model based on graph neural networks with self-attention mechanism and mutual information. COMPUTERS IN BIOLOGY AND MEDICINE. 2022 pdf
24 BatchDTA: implicit batch alignment enhances deep learning-based drug-target affinity estimation. BRIEFINGS IN BIOINFORMATICS. 2022
25 DeepFusionDTA: Drug-Target Binding Affinity Prediction With Information Fusion and Hybrid Deep-Learning Ensemble Model. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS. 2022
26 AttentionDTA: drug-target binding affinity prediction by sequence-based deep learning with attention mechanism. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS. 2022
27 DeepDTAF: a deep learning method to predict protein-ligand binding affinity. BRIEFINGS IN BIOINFORMATICS. 2021
28 MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery. BIOINFORMATICS. 2021
29 GraphDTA: predicting drug-target binding affinity with graph neural networks. BIOINFORMATICS. 2021 大量引用了
30 Deep drug-target binding affinity prediction with multiple attention blocks. BRIEFINGS IN BIOINFORMATICS. 2021 pdf
31 FusionDTA: attention-based feature polymerizer and knowledge distillation for drug-target binding affinity prediction. BRIEFINGS IN BIOINFORMATICS. 2021
32 GANsDTA: Predicting Drug-Target Binding Affinity Using GANs. FRONTIERS IN GENETICS. 2020. Link
33 SAG-DTA: Prediction of Drug-Target Affinity Using Self-Attention Graph Network. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. 2021. Link
34 Graph-sequence attention and transformer for predicting drug-target affinity. RSC ADVANCES. 2022 pdf
35 Ligand Binding Prediction Using Protein Structure Graphs and Residual Graph Attention Networks. MOLECULES. 2022 pdf || GitHub
36 Affinity2Vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning.SCIENTIFIC REPORTS. 2022. pdf
37 A brief review of protein-ligand interaction prediction. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL. 2022. pdf
38 Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model.COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL. 2021. pdf
  A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. 2022
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

 

 

关联文献

1 SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines. JOURNAL OF CHEMINFORMATICS. 2017 pdf 数据:KIBA dataset
2  
3  
4  
5  
6  
7  
8  
9  

关联网站或代码地址

1
HGRL-DTA (华中农大开发的):GitHub,文献(上面第一篇):pdf
开发和运行环境:2个Intel(R)Xeon(R)Gold 6146 3.20 GHz CPU、128 GB RAM和2个NVIDIA 1080 Ti GPU
数据: Davis dataset,KIBA dataset: KIBA, Davis数据(GitHub) ,所用图框架: Pytorch Geometric
2  
3  
4  
5  
   
   
   
   
   

 


药物-靶标亲和力预测数据集:

KIBA, Davis数据(GitHub)



上海市浦东新区沪城环路999号