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A B S T R A C T   

Identifying drug-target affinity (DTA) has great practical importance in the process of designing efficacious drugs 
for known diseases. Recently, numerous deep learning-based computational methods have been developed to 
predict drug-target affinity and achieved impressive performance. However, most of them construct the molecule 
(drug or target) encoder without considering the weights of features of each node (atom or residue). Besides, they 
generally combine drug and target representations directly, which may contain irrelevant-task information. In 
this study, we develop GSAML-DTA, an interpretable deep learning framework for DTA prediction. GSAML-DTA 
integrates a self-attention mechanism and graph neural networks (GNNs) to build representations of drugs and 
target proteins from the structural information. In addition, mutual information is introduced to filter out 
redundant information and retain relevant information in the combined representations of drugs and targets. 
Extensive experimental results demonstrate that GSAML-DTA outperforms state-of-the-art methods for DTA 
prediction on two benchmark datasets. Furthermore, GSAML-DTA has the interpretation ability to analyze 
binding atoms and residues, which may be conducive to chemical biology studies from data. Overall, GSAML- 
DTA can serve as a powerful and interpretable tool suitable for DTA modelling.   

1. Introduction 

Developing a new drug generally takes more than ten years and costs 
billions of dollars, and less than 12% of the drugs are approved to enter 
the market [1,2]. The accuracy assessment of drug-target interaction is a 
crucial step in the early stage of drug development and uncovering their 
side effects [3]. Binding affinity is the strength of drug-target interac-
tion, which is usually expressed in different metrics such as inhibition 
constant (Ki), dissociation constant (Kd), or the half-maximal inhibitory 
concentration (IC50) [4]. Although wet lab experiments to identify the 
drug-target binding affinity remain the most reliable and effective 
methods, they are time-consuming and resource-intensive. To mitigate 
this issue, numerous computational methods have been proposed to 
accelerate the speed of new drug development and reduce the cost [5]. 

The existing computational methods mainly fall into two categories: 
structure-based methods and structure-free methods. Structure-based 
methods mainly exploit three-dimensional (3D) structure information 

of small molecules and proteins to explore potential binding poses at the 
atom level and identify binding affinities. Molecular docking is one of 
the well-established structure-based methods that integrate various 
potential binding poses and scoring functions to minimize the free en-
ergy of the pose within binding sites [6,7]. Although these methods have 
achieved relatively attractive predictive performance and provided 
reasonable biological interpretation, their coverage is limiteddue to the 
high computational complexity of solving such 3D structures and the 
scarcity of small molecules and proteins with known 3D structures. 

An alternative to structure-based methods is structure-free methods, 
including feature-based methods and deep learning methods, which 
only rely on sequence information and require fewer computational 
resources. Feature-based methods mainly explore primary sequence 
information to model the binding affinity. Concretely, they focus on 
extracting discriminative biological features of a drug-target pair and 
sending extracted features into a machine/deep learning model, such as 
Naïve Bayes (NB), logistic regression (LR), deep neural network (DNN), 
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and other kernel-based methods, for predicting the binding affinity. For 
example, Lenselink et al. created and benchmarked a standardized 
dataset. Based on this dataset, they compared DNN with various tradi-
tional classifiers (e.g., NB and LR). It was shown that DNN produced the 
best results [8]. Rifaioglu et al. integrated multiple protein features, 
including physicochemical properties and sequential, structural, and 
evolutionary features, into numerous 2D vectors. They then fed the 
vectors to state-of-the-art pairwise input hybrid deep neural networks to 
predict the drug-target interactions [9–11]. 

Although feature-based methods have a high generalization and 
sequence sensitivity, they are limited by over-relying on expert 
knowledge-based hand-crafted feature engineering. Deep learning 
methods, that is, end-to-end differential models can potentially tackle 
the above limitations. Indeed, they can automatically learn features and 
invariances of given data and provide a satisfactory generalization 
despite a large number of parameters. Inspired by their successful 
application in various research fields [12,13], numerical deep learning 
methods are proposed for DTA prediction. For example, Öztürk et al. 
constructed a deep learning model DeepDTA that employed convolu-
tional neural networks (CNNs) to extract high-latent features of drugs 
and proteins separately and concatenated the two learned features for 
final prediction through fully connected layers [14]. Moreover, they 
proposed another DTA model, WideDTA, which integrated different 
text-based information to better represent the interaction [15]. Deep-
CDA [16] proposed a bidirectional attention mechanism to encode the 
binding strength between each protein substructure-composite sub-
structure pair. And then, a combination of CNN and Long Short Term 
Memory (LSTM) was built to get good representations of proteins and 
compounds. 

Although CNN-based models have shown satisfactory performance 
in DTA prediction, these models ignore the structural information. They 
only use sequences (1-dimensional structure) to represent the input 
molecules, which may miss the critical spatial information to charac-
terize the intrinsic properties of molecules. To solve this problem, graph 
neural networks (GNNs), which can extract structural features, are 
widely used in various DTA prediction models [17–22]. For example, 
DeepGS [23] first proposed a method to learn the interaction between 
drugs and targets through the local chemical context and topology 
structure and then extensive experiments on both large and small 
benchmark datasets demonstrated the competitiveness and superiority 
of the proposed DeepGS. GraphDTA [19] represented drug features as 
graphs and adopted some GNNs, like Graph Convolutional Network 
(GCN), Graph Attention Network (GAT), and Graph Isomorphic 
Network (GIN), to extract drug features. The results confirm that deep 
learning models are beneficial for drug-target binding affinity prediction 
and representing drugs as graphs is beneficial for model performance 
improvement. Jiang et al. represented compounds as molecular graphs, 
utilized contact maps to gain protein graphs through protein sequences, 
and then built GNN networks to obtain feature representation. The 
experimental results show that representing proteins through contact 
maps can improve the prediction performance of the model [24]. 

Above all, most of the existing deep learning methods fail to consider 
the contribution of each drug atom and protein residue to the binding 
affinity and ignore the information hidden in different layers, which will 
lead to partial information loss during the feature learning process and 
cause poor prediction performance. Moreover, when concatenating the 
learned features of drugs and proteins directly, it may introduce much 
task-irrelevant information without further optimization. To overcome 
the above limitations, here we propose GSAML-DTA, an interpretable 
deep learning framework for predicting drug-target binding affinity. 
First, we construct drug graphs and protein graphs from drug SMILES 
(Simplified Molecular Input Line Entry System) strings and protein 
contact maps, respectively. Next, a hybrid network GAT-GCN with a self- 
attention mechanism is designed to extract layer-wise structural infor-
mation from drug and protein graphs. The extracted layer-wise features 
of the drug and target are fused separately, and then fused features are 

concatenated to obtain a combined representation of a drug-target pair. 
Finally, the mutual information principle is applied to the combined 
representation, and the output is fed into fully connected layers to 
predict binding affinity. Through comprehensive evaluation on two 
benchmark datasets, we demonstrate that GSAML-DTA outperforms 
state-of-the-art methods. Additionally, our model can be employed to 
identify the important binding atoms and residues that contribute most 
to DTA prediction, thus providing biological interpretability. 

2. Materials and methods 

2.1. Datasets 

To perform head-to-head comparisons of GSAML-DTA to existing 
machine/deep learning-based methods, we evaluate our model on two 
publicly available DTA datasets, Davis dataset [25] and KIBA dataset 
[26]. The Davis dataset consists of 442 proteins and 68 compounds 
forming 30056 drug-target pairs, in which the binding affinity is 
measured by kinase dissociation constant (Kd) values. The higher value 
of Kd represent lower binding strength of a drug-target pair. These data 
are selected from the kinase protein family. Following the previous 
study [14,15,27], the Kd value is transformed into log space as follows: 

pKd = − log10
Kd

109.

(

1
)

The KIBA dataset adopts KIBA scores as drug-target binding affin-
ities, which are obtained by integrating kinase inhibitor bioactivities 
from different sources such as Ki, Kd, and IC50 [4]. The higher binding 
strength between the drug and target corresponds to a lower KIBA score. 
It contains 229 proteins and 2111 compounds forming 118254 
drug-target pairs. In these two datasets, the drug SMILES strings are 
collected from the PubChem compound database [28] and protein se-
quences are collected from the UniProt protein database [29]. The sta-
tistics of these two datasets are provided in Table 1. Note that due to the 
computer memory limitation, a long protein sequence and its related 
pairs are deleted from the KIBA dataset. Similar to DGraphDTA [24], 
each dataset is randomly divided into two parts (training set and testing 
set) with the ratio 5:1 for model performance evaluation. For the fair 
comparison, 5-fold cross validation is applied to training set and the 
average score is reported as the final performance. 

2.2. Model architecture 

In this section, we introduce the details of GSAML-DTA. The overall 
architecture of GSAML-DTA is shown in Fig. 1. In the first step, the drug 
SMILES strings are transformed into molecular graphs, and simulta-
neously the protein graphs are constructed based on contact maps, 
which are predicted from raw protein sequences. Then, a hybrid 
network GAT-GCN with a self-attention mechanism is utilized to extract 
the latent features from molecular graphs and protein graphs, respec-
tively. Subsequently, we concatenate the features of the drugs and 
proteins and introduce mutual information to optimize the combined 
features for obtaining more comprehensive and effective feature repre-
sentations. Finally, the optimized representation is fed into fully con-
nected layers to predict the binding affinity. 

2.3. Graph representation of drug molecules 

In the datasets, each sample consists of a drug molecule and a target 

Table 1 
Statistics of the two datasets.  

Number Dataset Proteins Compounds Binding entities 

1 Davis 442 68 30056 
2 KIBA 229 2111 118254  
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protein. For drug molecule, it is represented by short ASCII string 
SMILES that depicts the structure of chemical species. We employ RDKit 
[30] to convert the drug SMILES string into a molecular graph, in which 
nodes denote atoms and edges denote bonds. Following the model 
GraphDTA, we adopt a set of atomic features as the initial drug molec-
ular graph feature representation. More detailed information about 
atomic features is illustrated in Table S1. 

2.4. Graph representation of target proteins 

Similarly, a target protein can be described as a graph of integrations 
between residues. Subsequently, graph learning algorithms can be 
adopted to extract structural information. To this end, we employ the 
Pconsc4 [31], an open-source protein structure prediction tool, to 
generate target protein graphs for further mining intrinsic structural 
information hidden in protein sequences. However, the input of PSSM is 
the result of protein sequence alignment, and to improve computational 
accuracy and efficiency, HHblits [32] is adopted for protein sequence 
alignment. After that, Pconsc4 can convert the results of the protein 
sequence alignment into contact maps, that are, residue-residue inter-
action matrixes, in which the value indicates the Euclidean distance 
between two residues. If the Euclidean distance between a residue pair is 
less than a certain threshold, there is a contact between them [33]. 
Similar to the study DGraphDTA, the threshold is set to 0.5 and a group 
of residue descriptors are utilized as initial features of each residue in the 
protein graph. More details of the descriptors are displayed in Table S2. 

2.5. Representation learning on graphs 

The CNN framework has shown remarkable performance in pro-
cessing regular Euclidean data like text and images. However, it cannot 
be applied to non-Euclidean data such as molecular graphs. To solve this 
limitation, the GNN network is designed to directly operate graphs and 
extract their structural information. At present, GNN has evolved many 
powerful variants, such as GCN and GAT, which are effective in learning 
graph feature representation. In this study, we adopt GAT and GCN to 

capture intrinsic structural information of both drugs and targets. 
To extract the structure characteristics of drugs and proteins, we 

construct the model GSAML-DTA. It passes the input drug features 
through the GAT layer and GCN layer, and the output features of the two 
layers are multiplied by the self-attention matrix, respectively. The ob-
tained two features are concatenated as the drug features. Similarly, we 
can also learn protein features. After the two parts of features are 
concatenated, the mutual information principle is applied to remove the 
noise of the combined features. Finally, the optimized features are fed 
into the full connection layers to predict the affinity. 

2.5.1. Graph attention network 
The GAT model, an attention-based architecture, is initially proposed 

to tackle the problem of node classification of graph-structured data 
[34]. The model introduces a self-attention strategy to learn each node 
representation by attending to its neighbors. Mathematically, given an 
input graph G = (V ,E ), where V is the set of N nodes, each node is 
embedded by a d-dimensional vector, and E is the set of edges and is 
represented as an adjacency matrix A ∈ RN×Nthat describes the graph 
structure. The input of the GAT layer is a set of node features, x = { x1

̅→
,

x2
̅→

,…, xN
̅→

}, xi
→

∈ Rd. To obtain node features with sufficient expressive 
power, a linear transformation is applied to each node by a learnable 

weight matrix W ∈ Rd′
×d, where d′ is the feature dimension of output 

nodes. For the node i, the attention coefficient between it and its 
neighbor node j is calculated based their features: 

eij = a
(
W xi
→,W xj

→). (2) 

This value expresses the importance of node j to node i. To be com-
parable easily across different neighbor nodes, a softmax function is 
applied to normalize these attention coefficients: 

αij =
exp

(
eij
)

∑
k∈N i

exp (eik)
, (3)  

where N i is a set of neighborhoods of node i in the graph. Then, the final 
output features of each node are obtained by computing a linear com-

Fig. 1. The framework of the proposed GSAML-DTA model. Firstly, the drug SMILES sequences and protein sequences are transformed into molecular graphs and 
protein graphs, respectively. Then, the molecular and protein graphs are sent into a hybrid network GAT-GCN with the self-attention mechanism to learn the 
representations of the drug and protein. Next, mutual information is adopted to optimize the combined representation of a drug-target pair. Finally, the optimized 
representation is fed into fully connected layers to predict the affinity. 
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bination of the features corresponding to their normalized attention 
coefficients: 

x′

i

→
= σ
(
∑

j∈N i

αijW xj
→,

)

, (4)  

where σ(•) is the non-linear activation function, which is the ReLU 
activation function in our model. 

2.5.2. Graph convolutional network 
To further learn the local topological structure of the graph, we put a 

GCN layer on the top of the GAT layer. The GCN takes the node feature 
matrix X and the adjacency matrix A as inputs. The GCN operator fGCN(•)

over the graph is defined as: 

H(l+1) = fGCN
(
H(l),A

)
= σ
(

D̂
− 1

2 Â D̂
− 1

2H(l)W(l)
)
, (5)  

where Â = A + I is the adjacency matrix with self-loop in each node; I is 
the identity matrix; D̂ ∈ RN×N is graph diagonal degree matrix of Â; σ(•)
is the nonlinear activation function which is ReLU in our model; W(l) is 
the trainable weight parameter at the l-th layer; H(l) is the node feature 
matrix at the l-th layer. In our model, H(0) = X that is the output of the 
GAT layer. 

2.5.3. Self-attention mechanism 
Consider that the contribution of the features learned by the GAT 

network and GCN network to the final affinity prediction is different. 
Following the attention mechanism in GAT, we generate a set of weight 
matrices to learn the weights of the features obtained from each GCN 
network. Furthermore, the weighted features are concatenated together 
as the feature representation of the drug (target) molecule. The formula 
is as follows： 

Hs =W1h1‖W2h2, (6)  

where W1 and W2 are two attention weight matrices, h1 is the output of 
the GAT network, and h2 is the output of the GCN network. Hs represents 
the combined features of the two layers. 

2.5.4. Mutual information 
After obtaining the weighted feature representations of the drug and 

target separately, we concatenate them as the representation of a drug- 
target pair. However, directly concatenating different features may 
occur the problem of curse of dimensionality and introduce redundant 
information, lead to high computational complexity and prediction 
performance drop. To learn a more compact and accurate feature rep-
resentation of a drug-target pair, the mutual information principle is 
adopted to remove irrelevant information and keep task-relevant in-
formation as much as possible [35]. Therefore, our objective is as 
follows: 

max
Z

I(Y, Z) − βI(X,Z), (7)  

where β is a trade-off parameter that control the balance between 
complexity and accuracy of the learned features, and the function I is 
utilized to measure the mutual information between two random vari-
ables A and B as follows: 

I(A,B)=
∫

da db p(a, b)log
p(a, b)

p(a)p(b)
, (8)  

where a and b are examples of random variables A and B separately, 
p(a, b) is the joint distribution, and p(a) and p(b) are all the marginal 
distributions. 

2.5.5. Drug-target binding affinity prediction 
In our work, the drug-target binding affinity prediction problem is 

considered as a regression task. Therefore, we use the embedding Ĉij 

optimized by mutual information for final affinity prediction through 
two full connection layers: 

yi,j =FC
(
W1,W2, Ĉij

)
, (9)  

where yi,j is the predicted affinity value, W1 and W2 are the weight 
metrics of the two full connection layers. 

Finally, the mean squared error (MSE) is adopted as the loss function 
as follows: 

L=
1
n

∑(
yi,j − ŷi,j

)2
, (10)  

where ̂yi,j is the truth affinity value of the drug-target pair (di,tj), and n is 
the sample size. According to the loss function, we optimize the mapping 
function Θ(ω) : (N ,G di ,G tj )⟶yi,j and find the optimal trainable 
parameter ω. 

Algorithm1. The GSAML Algorithm 

3. Results and discussion 

3.1. Performance evaluation metrics 

To assess the performance of the proposed GSAML-DTA, we adopt 
three commonly used statistical metrics: Concordance Index (CI) [36], 
Mean Squared Error (MSE), and r2

m [37]. CI is mainly employed to assess 
the difference between the predicted value and the actual value as 
follows: 

CI=
1
Z
∑

dx − dy

h
(
bx − by

)
, (11)  

h(x) =

⎧
⎨

⎩

1, if x > 0
0.5, if x = 0
0, if x < 0

, (12)  

where bx is the predicted value of the larger affinity dx, by is the pre-
dicted value of the smaller affinity dy, Z is the normalization constant, 
and h(x) is the step function as shown in equation (12). 

MSE is a statistical measure that directly evaluates error. Assuming 
there are n estimated samples and their corresponding actual values, 
MSE is expressed as the expected value of the squared loss: 

MSE=
1
n
∑n

i=1
(pi − yi)

2
, (13)  

where pi is the estimated value of the ith sample, yi is the actual value of 
the ith sample. 

The r2
m is an indicator proposed in DeepDTA. If a variable is sub-

stantial, then r2
m means how close it is to the mean next time. The specific 

calculation formula is following: 

r2
m = r2 ×

(

1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2 − r2
0

√ )

, (14)  

where r2 is the squared correlation coefficient with an intercept, and r2
0 is 

the squared correlation coefficient without an intercept. 

3.2. The performance of GSAML-DTA 

To evaluate the performance of our proposed model, we compare our 
model with existing methods, including KronRLS [25], SimBoost [26], 
DeepDTA, WideDTA, MT-DTI [38], DeepCDA, MATT_ DTI [39], 
GraphDTA and DGraphDTA. From Table 2, we can see that in the Davis 
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dataset, our method significantly outperforms other methods in terms of 
MSE, r2

m. In particular, GSAML-DTA achieves an MSE of 0.201 and a r2
m 

of 0.718, which yield relative improvements over runner-up method 
DGraphDTA of 0.1% and 1.8%, respectively. GSAML-DTA does have a 
lower CI of 0.8% than DGraphDTA, while the differences between them 
are small. 

From Table 3, except for DGraphDTA, GSAML-DTA achieves the best 
performance amongst other existing methods with a CI of 0.900, an MSE 
of 0.132 and a r2

m of 0.800, which are 0.9–11.8%, 0.7–30.9% and 
4.4–45.8% higher than other competing methods. When compared to 
DGraphDTA, GSAML-DTA achieves a higher r2

m of 0.800 (a relative in-
crease 1.4%), while the CI and MSE are slightly worse than DGraphDTA. 

The results above indicate that our proposed method can be 
considered as an accurate and efficient tool for DTA prediction. For the 
superiority of our model, there are main three reasons: (i) Compared to 
traditional methods that only extract sequential information from raw 
protein sequences, our method employs contact maps to represent pro-
teins which will contain more spatial structure information; (ii) To 
obtain a more discriminative protein (compound) representation, we 
utilize two weight matrixes to optimize the two features from GAT and 
GCN networks, respectively, and then concatenate these two optimized 
features as the protein (compound) representation; (iii) After concate-
nating the protein and compound features, mutual information is 
introduced to filter out superfluous information and preserve task- 
related information as much as possible for obtaining a more compact 
and accuracy representation. Therefore, our model can integrate the 
intrinsic information of protein and compound into a more compre-
hensive representation, which plays a vital role in building an accuracy 
and robust model. 

3.3. Ablation study 

We design a set of ablation experiments to identify the contributions 
of the self-attention mechanism, fusion features, and mutual informa-
tion. The methods used in the ablation experiments are as follows:  

(1) GSAML-DTA with only GAT-GCN hybrid network (only GHN) 
is the most basic GAT-GCN hybrid network. The raw sequences 
pass through the GAT and GCN networks successively and then 
directly enter the fully connected layer for prediction.  

(2) GSAML-DTA without self-attention mechanism (w/o SAM) 
does not employ self-attention mechanism to optimize the 
concatenation of features learned by multi-layer networks and 
does not adopt mutual information, which directly concatenates 
the features learned by each layer of the network without 
weighting.  

(3) GSAML-DTA without mutual information (w/o MI) does not 
use mutual information to filter out the irrelevant information. 
The features acquired by the networks are directly imported into 
the fully connected layer for prediction. 

Fig. 2 shows the comparison results between GSAML-DTA and its 
three variants on two benchmark datasets. Overall, the proposed 
GSAML-DTA significantly outperforms its variants, which demonstrates 
the effectiveness of the GSAML-DTA model architecture. Specifically, 
the performance of GSAML-DTA (w/o SAM) is better than GSAML-DTA 
(only GHN), which confirms the effectiveness of the feature concate-
nation method. In addition, GSAML-DTA (w/o SAM) performance is 
worse than GSAML-DTA (w/o MI) since it directly concatenates the 
features from GAT and GCN networks, which results in more task- 
irrelated information hidden in the combined features. It suggests the 
significance of the self-attention mechanism component for prediction. 
Besides, GSAML-DTA performs better than GSAML-DTA (w/o MI), 
which shows that the mutual information principle is beneficial to filter 
out task-irrelated information and retain effective information. 

3.4. Performances of different GNN models 

It is critical to construct effective GNN networks to extract the 
discriminative characteristics of drugs and targets for improving the 
prediction accuracy of DTA. According to experience, it is often difficult 
for a single-layer network to obtain enough information compared with 
a multi-layer network, while too many layers may introduce too much 
noise. Therefore, this experiment is only for the two-layer network. 
Here, we adopt different schemes to combine two types of graph 
network architectures (GCN and GAT) and implement their performance 
comparison. Detailed network information and results are shown in 
Table 4 and Fig. 3, respectively. From Fig. 3(a), it is obvious to see that 
when GAT and GCN are employed to extract the features of drugs and 
targets in turn, the model achieves the best performance, which gener-
ates an MSE of 0.201, a CI of 0.896, and a r2

m of 0.718. Although when 
using the GCN-GAT and the GAT-GCN hybrid networks to extract the 
features of drugs and proteins, respectively, the r2

m of the model can 
reach 0.755, which is higher than GSAML-DTA, but the gap is small. 
Besides, we can see that in Fig. 3(b), GSAML-DTA achieves better per-
formance than other methods in terms of MSE, CI, and r2

m, which are 
0.132, 0.900, and 0.800, respectively. Given the above analysis, the 
GAT-GCN network for characterizing drugs and proteins is finally 
adopted. 

3.5. Model interpretability based on the compound 

Machine learning is often regarded as a black box model due to that it 
is challenging to locate and analyze which features are essential. The 
lack of interpretability limits the further application of deep learning 
methods, especially in computer-aided drug discovery. To explore 
whether our models can detect essential substructures responsible for 
specific toxicity or not (also called structural alerts) [40,41], we invoke 
Grad-AAM [22] to visualize the atomic importance of molecules. The 
following three groups of tests were designed: 

Table 2 
The performance of GSAML-DTA and baseline models on the Davis dataset.  

Model CI(std) MSE r2
m(std) 

KronRLS 0.871(±0.001) 0.379 0.407(±0.005) 
Simboost 0.872(±0.002) 0.282 0.664(±0.006) 
DeepDTA 0.878(±0.004) 0.261 0.630(±0.017) 
WideDTA 0.886(±0.003) 0.262 – 
MT-DTI 0.887(±0.003) 0.245 0.665(±0.014) 
DeepCDA 0.891(±0.003) 0.248 0.649(±0.009) 
MATT_DTI 0.891(±0.002) 0.227 0.683(±0.017) 
GraphDTA 0.893(±0.001) 0.229 – 
DGraphDTA 0.904( ± 0.001) 0.202 0.700(±0.015) 
GSAML-DTA 0.896(±0.001) 0.201 0.718( ± 0.004) 

– These results are not reported from original properties. 

Table 3 
The performance of GSAML-DTA and baseline models on the KIBA dataset.  

Model CI(std) MSE r2
m(std) 

KronRLS 0.782(±0.001) 0.441 0.342(±0.001) 
Simboost 0.836(±0.001) 0.222 0.629(±0.007) 
DeepDTA 0.863(±0.002) 0.194 0.673(±0.009) 
WideDTA 0.875(±0.001) 0.179 – 
MT-DTI 0.882(±0.001) 0.152 0.738(±0.006) 
DeepCDA 0.889(±0.002) 0.176 0.682(±0.008) 
MATT_DTI 0.889(±0.001) 0.150 0.756(±0.011) 
GraphDTA 0.891(±0.002) 0.139 – 
DGraphDTA 0.904( ± 0.001) 0.126 0.786(±0.011) 
GSAML-DTA 0.900(±0.004) 0.132 0.800( ± 0.004) 

– These results are not reported from original properties. 
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(1) GSAML-DTA  
(2) GAT-GCN adopts traditional GAT-GCN hybrid network instead of 

GSAML-DTA network.  

(3) GAT-GAT introduces a two-layer GAT network instead of 
GSAML-DTA network. 

Fig. 3 shows that GSAML-DTA performs better than the model with 
only a GAT-GCN or GAT-GAT networks in terms of MSE and CI, which 
confirms the superiority of GSAML-DTA. Fig. 4 shows the visualization 
results of some molecules (the deeper the color, the more important 
structure). According to previous studies [42–46], epoxide [45], fatty 
acid [43,46], sulfonate [42], and aromatic nitroso [44] are all funda-
mental structures of specific pathology. As shown in Fig. 4(a)–(d), we 
found that in GSAML-DTA, Grad-AAM did give higher weights to these 
structures, while in GAT-GAT, these significant weights were lower, 
which showed that our model could indeed learn the key structures for 

Fig. 2. Investigate the individual contributions of the self-attention mechanism, fusion features and mutual information on Davis and KIBA datasets.  

Table 4 
Combinations of different GNN models.  

Scheme Compounds Proteins 

1 2GAT 2GAT 
2 2GCN 2GCN 
3 GCN + GAT CAT + GCN 
4 CAT + GCN GCN + GAT 
5 GAT + GCN GAT + GCN  

Fig. 3. Performances of different GNN models on benchmark datasets. (a) Results on Davis dataset, (b) Results on KIBA dataset.  
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affinity prediction. Moreover, the GAT-GAT network performed slightly 
better than the GAT-GCN network, and in Fig. 4(a) and (b), GAT-GAT 
also paid more attention to the important structures. In addition, 
Grad-AAM also showed that our model can obtain not only key local 
information but also global structural information, as shown in Fig. 4(c) 
and (d). Therefore, the experimental results show that GSAML-DTA pays 
more attention to critical structures and achieves a higher performance. 

3.6. Model interpretation based on the protein 

To further explain the effectiveness of GSAML-DTA, we use the 
attention weight learned by GSAML-DTA to analyze the interactions 
between drug compounds and the target proteins, which play key roles 
in the binding pocket. To visualize the main interaction regions, we first 
learn and obtain the attention weight matrix of drug compounds and 
target proteins through the GAT network and then sort the weights to 
select the interaction sites with greater attention. Fig. 5 shows an 
example of weight visualization of the proposed GSAML-DTA. 

We select benzoic acid molecule and cdkl2 (PDB: 4aaa) protein for 
interactive visual analysis. The results show that the weight of drug 
compounds ranges from 0.76E-1 to 1.51. As shown in Fig. 5, we rank 
them according to attention and mark some atoms larger than 1.2 in red. 
The protein weight ranges from 1.38E-1 to 3.00 are obtained by our 
model and the main amino acid regions are residues 113–330. The peak 
is LEU-142. Most of the residues with large weight fall in the binding 

pocket, which indicates that our model can accurately predict the po-
tential binding sites. It also shows that our model can accurately capture 
the important structure for predicting the interactions between proteins 
and drugs. While some basic binding residues were not detected, some 
erroneous binding sites were highlighted, suggesting that some essential 
residues may indirectly affect binding. Overall, our model can focus on 
most residues in the binding pocket, demonstrating that our model can 
capture crucial structural features that play vital roles in drug-target 
binding. 

4. Conclusion 

In this study, we propose a novel deep-learning model, GSAML-DTA, 
to predict binding affinities of drug-target pairs, which is a crucial step 
for rapid virtual drug screening and drug development. We first generate 
graphs of the drug and target, and then employ a self-attention mech-
anism and a hybrid graph neural network GAT-GCN to extract structural 
information of them. Subsequently, to learn an informative represen-
tation of the drug-target pair, mutual information is applied to the 
combined features for removing irrelevant elements and retaining 
relevant information as much as possible. A series of evaluation exper-
iments are conducted on two benchmark datasets and the results show 
that the proposed method achieves a better predictive performance than 
the state-of-the-art methods. Moreover, the model has been shown to 
identify the essential binding structures and residues in the drugs and 

Fig. 4. Atom significance uncovered by Grad-AAM (GSAML-DTA), Grad-AAM (GAT-GCN) and Grad-AAM (GAT-GAT), and graph attention in structural alerts of (a) 
and (d) epoxides, (b) fatty acids, (c) fatty acid salts. 
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targets, respectively. These advantages demonstrate that GSAML-DTA 
not only improves the predictive ability of DTA prediction, but also 
provides biological insights for understanding the potential drug-target 
binding mechanism. 

Although GSAML-DTA has improved the performance of the DTA 
prediction, there are still several drawbacks in the current work. Firstly, 
this work only utilizes two-layer GNNs to extract structural features of 
molecules, which may be insufficient to learn the global information of a 
graph. We will consider building a deep framework of GNN for capturing 
more comprehensive topological information of a graph in future work. 
In addition, it is worth noting that GSAML-DTA can focus on specific 
‘important’ sites in the drug or target molecule by the attention mech-
anism. However, it hits a roadblock in automatically identifying the 
accurate interactive sites between drugs and targets without extra in-
formation. In the future, we will focus on constructing an end-to-end 
deep learning architecture to predict the drug-target binding sites in 
the drugs and targets based on only primary sequences. 
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