====
论文
====

======
Python
=====
=

=========
Tensorflow
=========

=======
PyTorch
=======

=====
Keras
=====

====
专题
====

====
链接
====

====
视频

====

=======
药物设计

=======

=======
材料科学
=======

============
经济学与金融学
==========
==



药物设计论文


返回

药物-蛋白质亲和力预测 药物-靶标相互作用预测 药物重定向 分子性质预测 蛋白质-蛋白质亲和力预测
药物代谢 药物毒理学 药物安全 抗原表位预测 药物-药物相互作用预测
基于配体的从头药物设计 基于受体的从头药物设计 药物知识图谱 药物-靶标的分子对接 分子逆合成设计
AI分子生成 抗体药物发现 免疫治疗(含CAR-T) 制药公司论文 AI4Drug-Papers

药物-药物相互作用预测

1. Al-Rabeah, M.H., Lakizadeh, A. Prediction of drug-drug interaction events using graph neural networks based feature extraction. Scientific Reports 2022, 12.
2. Bories, M., Bouzille, G., Cuggia, M., Le Corre, P. Drug-Drug Interactions with Oral Anticoagulants as Potentially Inappropriate Medications: Prevalence and Outcomes in Elderly Patients in Primary Care and Hospital Settings. Pharmaceutics 2022, 14.
3. Dang, L.H., Dung, N.T., Quang, L.X., Hung, L.Q., Le, N.H., Le, N.T.N., et al. Machine Learning-Based Prediction of Drug-Drug Interactions for Histamine Antagonist Using Hybrid Chemical Features. Cells 2021, 10.
4. Feng, Y.-H., Zhang, S.-W., Feng, Y.-Y., Zhang, Q.-Q., Shi, M.-H., Shi, J.-Y. A social theory-enhanced graph representation learning framework for multitask prediction of drug-drug interactions. Briefings in bioinformatics 2023.
5. Feng, Y.-H., Zhang, S.-W., Zhang, Q.-Q., Zhang, C.-H., Shi, J.-Y. deepMDDI: A deep graph convolutional network framework for multi-label prediction of drug-drug interactions. Analytical Biochemistry 2022, 646.
6. Feng, Y.-Y., Yu, H., Feng, Y.-H., Shi, J.-Y. Directed graph attention networks for predicting asymmetric drug-drug interactions. Briefings in Bioinformatics 2022, 23.
7. Gill, J., Moullet, M., Martinsson, A., Miljkovic, F., Williamson, B., Arends, R.H., et al. Evaluating the performance of machine-learning regression models for pharmacokinetic drug-drug interactions. Cpt-Pharmacometrics & Systems Pharmacology 2022.
8. Gill, J., Moullet, M., Martinsson, A., Miljkovic, F., Williamson, B., Arends, R.H., et al. Comparing the applications of machine learning, PBPK, and population pharmacokinetic models in pharmacokinetic drug-drug interaction prediction. Cpt-Pharmacometrics & Systems Pharmacology 2022, 11, 1560-8.
9. Han, K., Cao, P., Wang, Y., Xie, F., Ma, J., Yu, M., et al. A Review of Approaches for Predicting Drug-Drug Interactions Based on Machine Learning. Frontiers in Pharmacology 2022, 12.
10. Han, X., Xie, R., Li, X., Li, J. SmileGNN: Drug-Drug Interaction Prediction Based on the SMILES and Graph Neural Network. Life-Basel 2022, 12.
11. Hassanzadeh, R., Shabani-Mashcool, S. Does adding the drug-drug similarity to drug-target interaction prediction methods make a noticeable improvement in their efficiency? Bmc Bioinformatics 2022, 23.
12. He, C., Liu, Y., Li, H., Zhang, H., Mao, Y., Qin, X., et al. Multi-type feature fusion based on graph neural network for drug-drug interaction prediction. Bmc Bioinformatics 2022, 23.
13. He, H., Chen, G., Chen, C.Y.-C. 3DGT-DDI: 3D graph and text based neural network for drug-drug interaction prediction. Briefings in Bioinformatics 2022, 23.
14. Huang, L., Lin, J., Li, X., Song, L., Zheng, Z., Wong, K.-C. EGFI: drug-drug interaction extraction and generation with fusion of enriched entity and sentence information. Briefings in Bioinformatics 2022, 23.
15. Hung, T.N.K., Le, N.Q.K., Le, N.H., Tuan, L.V., Nguyen, T.P., Thi, C., et al. An AI-based Prediction Model for Drug-drug Interactions in Osteoporosis and Paget's Diseases from SMILES. Molecular Informatics 2022, 41.
16. Jang, H.Y., Song, J., Kim, J.H., Lee, H., Kim, I.-W., Moon, B., et al. Machine learning-based quantitative prediction of drug exposure in drug-drug interactions using drug label information. Npj Digital Medicine 2022, 5.
17. Kim, E., Nam, H. DeSIDE-DDI: interpretable prediction of drug-drug interactions using drug-induced gene expressions. Journal of Cheminformatics 2022, 14.
18. Kontsioti, E., Maskell, S., Bensalem, A., Dutta, B., Pirmohamed, M. Similarity and consistency assessment of three major online drug-drug interaction resources. British Journal of Clinical Pharmacology 2022, 88, 4067-79.
19. Kpanou, R., Osseni, M.A., Tossou, P., Laviolette, F., Corbeil, J. On the robustness of generalization of drug-drug interaction models. Bmc Bioinformatics 2021, 22.
20. Lin, J., Wu, L., Zhu, J., Liang, X., Xia, Y., Xie, S., et al. R-2-DDI: relation-aware feature refinement for drug-drug interaction prediction. Briefings in Bioinformatics 2022.
21. Liu, Z., Wang, X.-N., Yu, H., Shi, J.-Y., Dong, W.-M. Predict multi-type drug-drug interactions in cold start scenario. Bmc Bioinformatics 2022, 23.
22. Luo, Q., Mo, S., Xue, Y., Zhang, X., Gu, Y., Wu, L., et al. Novel deep learning-based transcriptome data analysis for drug-drug interaction prediction with an application in diabetes. Bmc Bioinformatics 2021, 22.
23. Mei, S., Zhang, K. A machine learning framework for predicting drug-drug interactions. Scientific Reports 2021, 11.
24. Noor, A., editor Integrating Mechanistic Information to Predict Drug-Drug Interactions and Associated Relevance for Decision Support. IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS); 2022 2022
Jun 01-04; Toronto, CANADA2022.
25. Pang, S., Zhang, Y., Song, T., Zhang, X., Wang, X., Rodriguez-Paton, A. AMDE: a novel attention-mechanism-based multidimensional feature encoder for drug-drug interaction prediction. Briefings in Bioinformatics 2022, 23.
26. Qiu, Y., Zhang, Y., Deng, Y., Liu, S., Zhang, W. A Comprehensive Review of Computational Methods For Drug-Drug Interaction Detection. Ieee-Acm Transactions on Computational Biology and Bioinformatics 2022, 19, 1968-85.
27. Ren, Z.-H., You, Z.-H., Yu, C.-Q., Li, L.-P., Guan, Y.-J., Guo, L.-X., et al. A biomedical knowledge graph-based method for drug-drug interactions prediction through combining local and global features with deep neural networks. Briefings in Bioinformatics 2022.
28. Ren, Z.-H., Yu, C.-Q., Li, L.-P., You, Z.-H., Guan, Y.-J., Wang, X.-F., et al. BioDKG-DDI: predicting drug-drug interactions based on drug knowledge graph fusing biochemical information. Briefings in Functional Genomics 2022, 21, 216-29.
29. Ren, Z.-H., Yu, C.-Q., Li, L.-P., You, Z.-H., Pan, J., Guan, Y.-J., et al. BioChemDDI: Predicting Drug-Drug Interactions by Fusing Biochemical and Structural Information through a Self-Attention Mechanism. Biology-Basel 2022, 11.
30. Rong, L., Qiu, H., Xie, M., Zhao, Z., Wei, T., Dai, A., et al. Prevalence and Risk Factors for Osimertinib-associated Drug-Drug Interactions in Non-small-cell Lung Cancer Patients. Latin American Journal of Pharmacy 2022, 41, 1612-7.
31. Savitha, P.M., Rani, M.P., editors. A Comprehensive Survey of AI Methods to Predict Adverse Drug-Drug Interactions. 5th International Conference on Computational Vision and Bio Inspired Computing (ICCVBIC); 2021 2022
Nov 25-26; Coimbatore, INDIA2022.
32. Schwarz, K., Allam, A., Gonzalez, N.A.P., Krauthammer, M. AttentionDDI: Siamese attention-based deep learning method for drug-drug interaction predictions. Bmc Bioinformatics 2021, 22.
33. Shao, Z., Qian, Y., Dou, L., editors. TBPM-DDIE: Transformer Based Pretrained Method for predicting Drug-Drug Interactions Events. 46th Annual IEEE-Computer-Society International Computers, Software, and Applications Conference (COMPSAC) - Computers, Software, and Applications in an Uncertain World; 2022 2022
Jun 27-Jul 01; Electr Network2022.
34. Van Laere, S., Muylle, K.M., Dupont, A.G., Cornu, P. Machine Learning Techniques Outperform Conventional Statistical Methods in the Prediction of High Risk QTc Prolongation Related to a Drug-Drug Interaction. Journal of Medical Systems 2022, 46.
35. Vijayan, A., Chandrasekar, B.S., editors. Drug-Drug Interactions and Side Effects Prediction Using Shallow Ensemble Deep Neural Networks. International Conference on Distributed Computing and Optimization Tech-niques (ICDCOT); 2021 2022
Jun 25-26; SJB Inst Technol, ELECTR NETWORK2022.
36. Vo, T.H., Nguyen, N.T.K., Kha, Q.H., Le, N.Q.K. On the road to explainable AI in drug-drug interactions prediction: A systematic review. Computational and Structural Biotechnology Journal 2022, 20, 2112-23.
37. Wang, W., Liu, H., editors. ACNN: Drug-Drug Interaction Prediction Through CNN and Attention Mechanism. 18th International Conference on Intelligent Computing (ICIC); 2022 2022
Aug 07-11; Xian, PEOPLES R CHINA2022.
38. Xie, J., Zhao, C., Ouyang, J., He, H., Huang, D., Liu, M., et al. TP-DDI: A Two-Pathway Deep Neural Network for Drug-Drug Interaction Prediction. Interdisciplinary Sciences-Computational Life Sciences 2022, 14, 895-905.
39. Yalcin, N., Kasikci, M., Celik, H.T., Allegaert, K., Demirkan, K., Yigit, S., et al. Novel Method for Early Prediction of Clinically Significant Drug-Drug Interactions with a Machine Learning Algorithm Based on Risk Matrix Analysis in the NICU. Journal of Clinical Medicine 2022, 11.
40. Yan, C., Duan, G., Zhang, Y., Wu, F.-X., Pan, Y., Wang, J. Predicting Drug-Drug Interactions Based on Integrated Similarity and Semi-Supervised Learning. Ieee-Acm Transactions on Computational Biology and Bioinformatics 2022, 19, 168-79.
41. Yan, X.-Y., Yin, P.-W., Wu, X.-M., Han, J.-X. Prediction of the Drug-Drug Interaction Types with the Unified Embedding Features from Drug Similarity Networks. Frontiers in Pharmacology 2021, 12.
42. Yu, H., Li, K., Shi, J. DGANDDI: Double Generative Adversarial Networks for Drug-Drug Interaction Prediction. IEEE/ACM transactions on computational biology and bioinformatics 2022, PP.
43. Yu, H., Zhao, S., Shi, J. STNN-DDI: a Substructure-aware Tensor Neural Network to predict Drug-Drug Interactions. Briefings in Bioinformatics 2022, 23.
44. Zaikis, D., Karalka, C., Vlahavas, I. A Message Passing Approach to Biomedical Relation Classification for Drug-Drug Interactions. Applied Sciences-Basel 2022, 12.
45. Zaikis, D., Vlahavas, I. TP-DDI: Transformer-based pipeline for the extraction of Drug-Drug Interactions. Artificial Intelligence in Medicine 2021, 119.
46. Zhang, C., Lu, Y., Zang, T. CNN-DDI: a learning-based method for predicting drug-drug interactions using convolution neural networks. Bmc Bioinformatics 2022, 23.
47. Zhang, S., Yu, C., Xu, C., editors. Integrating Knowledge Graph and Bi-LSTM for Drug-Drug Interaction Predication. 18th International Conference on Intelligent Computing (ICIC); 2022 2022
Aug 07-11; Xian, PEOPLES R CHINA2022.
48. Zhu, J., Liu, Y., Zhang, Y., Chen, Z., Wu, X. Multi-Attribute Discriminative Representation Learning for Prediction of Adverse Drug-Drug Interaction. Ieee Transactions on Pattern Analysis and Machine Intelligence 2022, 44, 10129-44.
49. Zhu, J., Liu, Y., Zhang, Y., Li, D. Attribute Supervised Probabilistic Dependent Matrix Tri-Factorization Model for the Prediction of Adverse Drug-Drug Interaction. Ieee Journal of Biomedical and Health Informatics 2021, 25, 2820-32.

上海市浦东新区沪城环路999号