====
Paper
====

======
Python
=====
=

=========
Tensorflow
=========

=======
PyTorch
=======

=====
Keras
=====

=======
Topics
=======

====
Link
====

====
Video

====

==========
Drug Design

==========

==============
Material Science
==============

=========
Economics
=========
=


============
Data generation
============




1  
2 Gupta, Anvita, and James Zou. "Feedback GAN (FBGAN) for DNA: a novel feedback-loop architecture for optimizing protein functions." arXiv preprint arXiv:1804.01694 (2018).
3 Amimeur, Tileli, et al. "Designing Feature-Controlled Humanoid Antibody Discovery Libraries Using Generative Adversarial Networks." bioRxiv (2020).
4 Repecka, Donatas, et al. "Expanding functional protein sequence space using generative adversarial networks." bioRxiv (2019): 789719.
5 An overview of biological data generation using generative adversarial networks. 2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)
6 Generative Adversarial Networks and Its Applications in Biomedical Informatics . 2020
7 Synthetic data generation: State of the art in health care domain。2023. COMPUTER SCIENCE REVIEW
8 Synthetic data in machine learning for medicine and healthcare. 2021.NATURE BIOMEDICAL ENGINEERING
9 Artificial intelligence-generated peripheral blood film images using generative adversarial networks and diffusion models. 2023. AMERICAN JOURNAL OF HEMATOLOGY
10 Diffusion models in medical imaging: A comprehensive survey. 2023. MEDICAL IMAGE ANALYSIS
11 Synthetic Patient Data Generation and Evaluation in Disease Prediction Using Small and Imbalanced Datasets. 2023. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
12 Synthetic electronic health records generated with variational graph autoencoders. 2023.NPJ DIGITAL MEDICINE
13 Critical evaluation of the use of artificial data for machine learning based de novo peptide identification. 2023.COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL
14 A Large-scale Synthetic Pathological Dataset for Deep Learning-enabled Segmentation of Breast Cancer. 2023.SCIENTIFIC DATA
15 Physics-Driven Synthetic Data Learning for Biomedical Magnetic Resonance: The imaging physics-based data synthesis paradigm for artificial intelligence. 2023.IEEE SIGNAL PROCESSING MAGAZINE
16 Transformer-based protein generation with regularized latent space optimization .2022 nature machine intelligence
17  
18  
19  

DNA Generation

 

1 Killoran, Nathan, et al. "Generating and designing DNA with deep generative models." arXiv preprint arXiv:1712.06148(2017).
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
   
   
   
   

Protein Generation

Generative design of de novo proteins based on secondary-structure constraints using an attention-based diffusion model. 2023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 


Biomedical Image Generation

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Clinical Data Generation

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

   
   
   
   
   
   
   
   
   

 


Diffusion model

对比学习是一种自监督学习方法,用于在没有标签的情况下,通过让模型学习哪些数据点相似或不同来学习数据集的一般特征。