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The acid–base dissociation constant (pKa) is a fundamental property influencing many ADMET
properties of small molecules. However, rapid and accurate pKa prediction remains a great challenge.
In this review, we outline the current advances in machine-learning-based QSAR models for pKa

prediction, including descriptor-based and graph-based approaches, and summarize their pros and
cons. Moreover, we highlight the current challenges and future directions regarding experimental data,
crucial factors influencing pKa and in silico prediction tools. We hope that this review can provide a
practical guidance for the follow-up studies.
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Introduction
The acid–base dissociation constant (pKa) is a key physicochem-
ical parameter to describe the extent of proton dissociation reac-
tions. Ka and its logarithmic form for a monoprotic acid (HA) are
expressed in Equation (1):

pKa HAð Þ ¼ �log10Ka ¼ �log10
Hþ½ � A�½ �
HA½ � ð1Þ

Conventionally, the pKa of a basic compound is referred to
that of its conjugate acid. For multiprotic compounds (com-
pounds containing multiple ionizable centers), macro-pKa and
micro-pKa need to be distinguished. In detail, micro-pKa consid-
ers the loss or gain of a proton from a specific ionization site,
whereas macro-pKa reflects the dissociation ability of the whole
molecule and is the net result of the equilibration of various
microstates1 (Equation (2)):

Kmacro
a ¼ PMdeprot

j¼1
1PNprot

i¼1
1

Kmicro
ij

ð2Þ

where Mdeprot denotes M deprotonated microstates and Nprot

denotes N protonated microstates.
⇑ Corresponding authors.Pan, P. (panpeichen@zju.edu.cn), Hou, T. (tingjunhou@zju.edu.cn).
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pKa is a fundamental physicochemical parameter widely
applied in medicinal chemistry, organic synthesis, biochemistry,
environmental science and materials science.1 In drug discovery,
pKa determines the predominant protonation form of a drug-like
molecule under specific tissues and organs with varied pH ranges,
and thus has a high impact on its biological activity, ADMET pro-
file2,3 and other properties.

As an indispensable complement to experimental techniques,
in silico pKa prediction is more efficient and comparatively
cheaper. Furthermore, theoretical calculations could provide
fine-grained information inaccessible from experiments; for
instance, the micro-pKa of a single titratable site and even the
nano-pKa of a specific conformation.4 Existing approaches for
pKa prediction can be divided into two categories: physics-
based and empirical methods. The latter includes linear free
energy relationship (LFER) and QSAR models. Physics-based
pKa prediction can be formulated as Equation (3), which relies
on reaction free energy calculation and is commonly supple-
mented with linear empirical corrections (LECs) to absorb sys-
tematic errors5:

pKa HAð Þ ¼ A
DG�

aq

RTln 10ð Þ þ B ð3Þ
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where DG�
aq is the aqueous-phase reaction free energy at the stan-

dard state (T = 298.15 K, C = 1 mol/L), A and B are empirical con-
stants derived from experimental data and R and T denote the gas
constant and absolute temperature, respectively. The majority of
the methods submitted to the SAMPL6 and SAMPL7 blind-
challenge belongs to the physics-based category,6 including ab ini-
tio quantum mechanics (QM),7 density functional theory (DFT),8–
10 hybrid QM and molecular mechanics (MM),11 embedded clus-
ter reference interaction site model (EC-RISM),12,13 integral equa-
tion formalism of the MiertusScrocco–Tomasi (IEFPCM/MST)
model,14 among others. However, the accuracy of solvation mod-
els remains a bottleneck15 and the expensive computational cost
is infeasible for high-throughput evaluation.

Assuming that the contributions of the substituents in a given
class of acid or base are additive, LFER-based pKa calculation can
be parameterized by the Hammett–Taft (HT) equation16:
pKa ¼ pK0
a � q

Pm
i ri ð4Þ
where pK0
a is the parent compound pKa, q and r are constants

describing the substitution effect and m is the number of sub-
stituents. Empirical pKa estimation using LFER has been exten-
sively applied in commercial software, for instance, ACD/labs
(https://www.acdlabs.com/products/percepta-plat-
form/physchem-suite/pka/) and Epik (https://www.schro-
dinger.com/products/epik). Nevertheless, these models are
confined to specific chemical series with available empirical con-
stants for the parent structure and substituents.17

Over the past decade, QSAR modeling based on machine
learning (ML) techniques has achieved remarkable success in
pKa prediction. Concretely, QSAR approaches can be classified
into descriptor-based and graph-based models (Fig. 1).
Descriptor-based models take the fixed-dimensional feature vec-
tors extracted by human experts as input. By contrast, graph-
based models operate directly on the molecular graphs annotated
with basic atom and bond attributes. In this review, we outline
the recent advances in ML-based pKa prediction of small mole-
FIGURE 1
Overview of machine-learning-based QSAR modeling for pKa prediction. The p
models, respectively. Abbreviations: SVM, support vector machine; ANN, artificial
graph neural networks.
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cules, summarize the in silico prediction tools and discuss the cur-
rent challenges and future directions.
Descriptor-based models
The prediction accuracy of descriptor-based models depends on
the choice of input features. Currently, thousands of quantitative
descriptors and qualitative fingerprints are available to represent
small molecules.18 For pKa prediction, atomic descriptors and
rooted fingerprints have been widely used to represent the local
environment around the ionizable center. These local represen-
tations can be naturally applied to predict micro-pKa.

Atomic descriptors
In this review, those real-valued parameters describing a certain
atom or chemical bond are regarded as atomic descriptors. Most
atomic descriptors derived from QM can be obtained by ab initio,
DFT or semi-empirical19 calculations. For a rapid estimation, they
can also be obtained via empirical methods, such as Pauling’s
electronegativity and Gasteiger partial charge.20 Existing work
has validated the relationship between pKa values and various
atomic descriptors, including partial atomic charges,21 Fukui
frontier molecular orbital (FMO) descriptors (among which elec-
trophilic superdelocalizabity (SE) is the most contributive),22

group philicity index,23 quantum topological molecular similar-
ity (QTMS) descriptors,24 density functional reactivity theory
(DFRT) descriptors [molecular electrostatic potential (MEP) and
natural atomic orbital (NAO)],25 among others.

The small number of atomic descriptors and their clear
physicochemical meaning make atomic-descriptor-based models
easily interpretable. The prior knowledge of the dissociation pro-
cess can guide the choice of atomic descriptors and the model
performance can lead to a better understanding of the chemical
phenomena in turn. For instance, Popelier’s group made an
essential contribution to pKa prediction based on the descriptor
of ab initio bond lengths (AIBL). Their study demonstrated the
strength of the AIBL-based models in handling tautomerizable
molecules, which can somewhat overcome the lack of knowledge
Drug Discovery Today

urple and green dashed boxes refer to descriptor-based and graph-based
neural networks; ISOAK, iterative similarity optimal assignment kernel; GNN,
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on relative tautomeric stability. A single AIBL–pKa relationship
identified by statistical analysis can reduce computational cost
and reveal the dominant tautomer.26 They also highlighted the
potential of AIBL for amending and augmenting experimental
pKa data.

27,28

Typically, the atomic descriptors are calculated for the atoms
of interest (AOI), including the ionization center undergoing
protonation or deprotonation, the leaving proton29 and other
neighboring atoms (e.g., the atoms within the ionizable func-
tional group).23 The ML methods for modeling descriptor–pKa

relationships can range from simple linear regression to complex
neural networks. Generally speaking, splitting molecules into
subsets allows a simpler model with fewer descriptors.22 How-
ever, the class-specific models can suffer from limited application
domain and high risk of overfitting.

To address the above issues, Skolidis et al.30 successfully imple-
mented multitask learning to improve model performance on
some subclasses with insufficient data by utilizing the data from
related tasks. Hunt et al.19 took a step forward by building a ver-
satile model to predict pKa for diverse mono- and multi-protic
compounds using radial basis function (RBF). The main idea of
their model is to use semi-empirical QM descriptors to capture
atomic and bond properties in the forms of conjugate acid and
conjugate base, which considers the whole molecule environ-
ment with acceptable computational cost. Similarly, Bannan
et al.31 built a general Gaussian process (GP) model based on
ten physical features describing a specific form or the difference
between two conjugated forms. Particularly, the GP model can
provide an uncertainty estimation reflecting its confidence of
the prediction. In 2021, Raddi et al.32 constructed a deep GP
model by utilizing more features, which achieved significant
improvements over the standard GP model.

Rooted fingerprints
Rooted fingerprints are binary or count-based feature vectors to
describe the local structural environment around the specified
root atom. Here, the root atom refers to the ionization atom. A
pioneering study by Xing et al.33 introduced a novel molecular-
tree-structured fingerprint to describe the composition of atom
and/or group types at each level originated from the ionization
center. In addition, creating tailored fingerprints for each func-
tional group could considerably improve model performance.

In MoKa, Milletti et al.34 proposed a fingerprint derived from
GRID molecular interaction fields (MIFs). The model based on a
fragment database precomputed by MIFs can rapidly describe
atoms using energy minima, then convert them into one-hot
vectors (binned by energy values) and sum up at each topological
distance. A strong advantage of this method is that the MIF-
derived parameters can encode 3D information to some extent,
for instance H-bonding and steric effects.

Lee et al.35 created a decision tree model (SMARTS pKa) based
on a novel set of SMARTS strings, which discriminates different
ionization centers and substituents. In this way, they avoided
overfitting caused by dividing training data into class-specific
subsets, and the prediction results would be a pKa range deter-
mined by the training samples sharing the same leaf node.

In 2019, Lu et al.36 employed rooted topological torsion fin-
gerprints (RTorsion), which explicitly encode the path and atom
connectivity information, for pKa prediction of aliphatic amines.
Specifically, a 1-bond path can be described as [(N, 0, 0), (C, 1,
0)], which includes the information of atom types, number of
non-hydrogen atom neighbors not in this path and the number
of p election pairs. The results proved that RTorsion coupled with
ML methods, especially support vector machine (SVM), can pro-
vide excellent prediction (RMSE = 0.45, MAE = 0.33 and R2 = 0.84
on the external test set with 726 pKa values).

In 2021, Plante et al.28 designed distance spectrum finger-
prints where each feature reflects the impact of a specific atom
type on the pKa values, similar to the molecular-tree-structured
fingerprints. Subsequently, atom-type coefficients (aAtom�type in
Equation (5)) were generated via partial least squares (PLS). The
special design is that they explicitly consider the topological dis-
tance decay effect. Moreover, the six-digit number (in the format
of ABBCDD) representing atom types is highly extendable.

pKa ¼
P

All atoms
aAtom�type

Topological Distance2atom
ð5Þ
Hybrid features
In recent years, researchers have extensively experimented with
various combinations of molecular features and ML algorithms
and made significant contributions in terms of open-source data,
codes and prediction tools. Descriptors and fingerprints can sup-
plement each other because descriptors emphasize physicochem-
ical properties whereas fingerprints focus on structural
information.20,36 Mansouri et al.37 utilized continuous molecular
descriptors, binary fingerprints and fragment counts generated
by PaDEL to construct pKa prediction models and proved that
the hybrid features consistently outperformed a single feature
set. In particular, they separated molecules into the acidic and
basic subsets and built the prediction models separately. The
SVM model combined with a k-nearest neighbor (kNN) classifier
performed best and was implemented in OPERA.38 Baltruschat
et al.39 comprehensively evaluated six combinations of molecular
features and found that the random forest (RF) model based on
the RDKit descriptors and extended connectivity fingerprints
(ECFP) achieved the best predictions. In the external tests, the
RF model beat OPERA, possibly owing to the expanded training
data and the choice of building a single model to handle com-
pounds with their protonated states at pH = 7.4. In 2021, Yang
et al.1 pioneeringly developed a holistic model capable of simul-
taneously predicting aqueous and nonaqueous pKa by fully uti-
lizing the intrinsic relationship of pKa values between solvents.
They introduced structural and physical-organic-parameter-
based descriptors (SPOC), which contain the RDKit descriptors
and MACCS fingerprints, combined with a novel ionic status
labeling (ISL) to distinguish three pKa subtypes (i.e., pKa values
of neutral, protonated and negatively charged molecules). The
model trained with extreme gradient boosting (XGBoost) or arti-
ficial neural networks (ANN) algorithms achieved a low MAE of
0.87 pKa.

By contrast, local representations can better capture electronic
effects but might ignore remote effects and the interactions
between multiple dissociation sites. Furthermore, taking the glo-
bal representations into account can heuristically help ML meth-
ods to better determine the relative importance of each atomic
descriptor.40 The representative work by combining local and
www.drugdiscoverytoday.com 3
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global representations includes: (i) rooted ECFP and standard
ECFP20; (ii) atomic descriptors and size-related descriptors41;
and (iii) atomic descriptors and standard ECFP.32 It is important
to stress that global representations can also introduce confusing
information about distant and irrelevant functional groups.20.

Graph-based models
Small molecules can be naturally described as graphs in which
nodes and edges denote atoms and chemical bonds, respectively.
Graph-based methods can extract information directly from the
annotated molecular graphs, demonstrating a great advantage in
molecular property prediction.

Graph kernels
Conventionally, graph-structured data can be represented using
graph kernels, which compute an inner product on graphs to
measure their similarity. Graph kernels allow the kernelized ML
methods to work directly on graphs without intermediate con-
version from graphs to feature vectors, thus avoiding the loss
of structural information.42 In 2010, Rupp et al.43 employed iter-
ative similarity optimal assignment kernel (ISOAK) and kernel
ridge regression (KRR) to estimate pKa values. The results demon-
strated that the graph-kernel-based methods could yield compa-
rable performance compared with the semi-empirical models
based on frontier electron theory, and time-consuming structure
optimization is unnecessary. Significantly, the graph kernel
approach performed better on larger series of compounds with
high structural diversity, showing its potential for developing a
generic model.

Graph neural networks
Although graph kernels can directly operate on graphs, they are
still manually engineered and cannot learn the optimal represen-
tations tailored to the downstream tasks. In this context, scien-
tists extended the convolutional neutral networks (CNN) to
graph-structured data and proposed graph neural networks
(GNN). In 2015, Duvenaud et al.44 first introduced GNN to learn
the differentiable neural graph fingerprints (Neural FP) with end-
to-end supervision. Neural FP is a type of real-valued vector
where each feature can be activated by similar but distinct frag-
ments, making the representations more meaningful and low-
dimensional. Extensive experiments demonstrated that Neural
FP exhibited stronger predictive power and interpretability than
circular fingerprints. In 2016, Kipf et al.45 formally introduced
the concept of graph convolutional networks (GCN). Subse-
quently, a series of GNN variants were proposed, including mes-
sage passing neural networks (MPNN),46 graph attention
networks (GAT),47 directed MPNN (D-MPNN),48 Attentive FP,49

among others.
In the past few years, GNN has attracted growing interest and

achieved considerable success in drug discovery, including
molecular property prediction,50 de novo drug design,51 drug–tar-
get interactions,52 and so on. Without exception, the effective-
ness of GNN in the pKa prediction task has also been
evaluated. Given that pKa is an atom-centered property, it can
be treated as either a node-level or graph-level task. Dealing with
node-level tasks, GNN utilizes stacked graph convolution layers
to aggregate the information from neighborhoods and update
4 www.drugdiscoverytoday.com
the hidden states of the target node (message passing phase).
As for graph-level tasks, a global pooling operation is imple-
mented to summarize node-level representations into a graph-
level representation (readout phase).

In 2019, Roszak et al.20 took the lead in employing GCN to
estimate the acidity of CAH groups in nonaqueous solvents. To
find the most acidic proton in the molecule, they directly used
the node embeddings to predict the pKa values for all atoms
(Fig. 2a). The work evidenced that GCN can provide rapid
(within milliseconds) and accurate predictions for atom-specific
characteristics. In realistic chemical examples, the proposed
GCN model correctly predicted the reacting site in > 90 % of
cases, showing its potential application in synthetic planning.

The follow-up studies incorporated prior domain knowledge
into the GNN architectures for pKa prediction, which introduced
inductive bias and improved the model’s ability to capture task-
related information. In 2021, Pan et al.53 developed a GCN-based
pKa predictor named MolGpKa. They added two extra dimen-
sions in the initial atom features to encode the ionization cen-
ters, one is a binary flag and the other is the shortest
topological distance to the target center. Given a multiprotic
molecule, they can identify the ionization sites via substructure
matching and get the graph representations for each specified
site one by one (Fig. 2b). They extended the SMARTS list pro-
vided by Ropp et al.54 to cover all oxygen, nitrogen and sulfur
centers in the training set, finally containing 144 ionizable
groups. The detailed analysis showed that MolGpKa achieved
comparable performance to commercial software Marvin
(Table 1) and Epik and the learned effects of substituents agreed
well with expert knowledge.

Later, Xiong et al.55 combined multi-instance learning (MIL)
and Attentive FP to establish a novel model capable of predicting
micro-pKa and macro-pKa called Graph-pKa. Similar to the work
by Roszak et al.,20 Graph-pKa predicts the micro-pKa directly from
the learned node features. Unlike the previous work that obtains
micro-pKa from QM calculation20 or assigns the macro-pKa to the
dominant site as an approximation,1,19,53 which will inevitably
introduce data noise, Graph-pKa provides a new paradigm for
dealing with micro-pKa. In detail, Graph-pKa follows MIL to cal-
culate macro-pKa (label of bags) from predicted micro-pKa (label
of instance) utilizing the approximate mathematical relation-
ships (Equations (6) and (7)) between them, thus training against
the experimental macro-pKa labels (Fig. 2c). Graph-pKa achieved
state-of-the-art performance on the SAMPL6 dataset and exhib-
ited indistinguishable intelligence from a human expert in locat-
ing the most acidic and basic sites of molecules (evaluated by
consistency rate and difference values).

pKa acidicð Þ ¼ � log
PN

i¼110
�pKa acidicð Þ

i
� �

ð6Þ
pKa basicð Þ ¼ log
PN

i¼110
pKa basicð Þ

i
� �

ð7Þ

A limitation of MolGpKa and Graph-pKa is that they can only
deal with neutral molecules and predict the most acidic and basic
pKa values. More recently, Mayr et al.56 developed a workflow
named pKasolver to realize sequential pKa prediction. To this
end, they identified the ionizable sites of a given compound
using Dimorphite-DL,54 and then generated protonated-
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FIGURE 2
Illustration of GNN-based pKa prediction models. (a) Roszak’s model.20 (b) MolGpKa

53: the atom features refer to the ionization center flag and the shortest
distance to the target center. (c) Graph-pKa.

55 (d) pKasolver
56: the atom features refer to the formal charge and the total number of hydrogens. The red and

blue circles refer to acidic and basic ionization centers, respectively. Abbreviations: GNN, graph neural networks; MLP, multilayer perceptron.

TABLE 1

QSAR-based in silico tools for pKa prediction.

Name Molecular
representation

Methods URL Availability

Marvin57 Atomic descriptors MLR https://chemaxon.com/products/marvin Commercial
ADMET redictor

(S + pKa)
58

Atomic descriptors Ensemble of
ANN

https://www.simulations-plus.com/software/
admetpredictor/

Commercial

MoKa22,59 Rooted fingerprints PLS https://www.moldiscovery.com/software/moka/ Commercial
OPERA25 Hybrid features kNN + SVM https://github.com/NIEHS/OPERA Free
Yang’s model1 Hybrid features ANN/XGBoost https://pKa.luoszgroup.com Free
Baltruschat's model27 Hybrid features RF https://github.com/czodrowskilab/Machine-learning-meets-

pKa
Free

Roszak’s model10 Molecular graphs GNN https://pKa.allchemy.net Free
MolGpKa

42 Molecular graphs GNN https://xundrug.cn/molgpKa Free
Graph-pKa

44 Molecular graphs GNN https://pKa.simm.ac.cn Free
pKasolver

45 Molecular graphs GNN https://github.com/167mayrf/pKasolver Free

Abbreviations: MLR, multiple linear regression; ANN, artificial neural networks; PLS, partial least squares; kNN, k-nearest neighbor; SVM, support vector machine; XGBoost, extreme gradient boosting;
RF, random forest; GNN, graph neural networks.
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deprotonated pairs where graph embeddings are concatenated
for micro-pKa prediction (Fig. 2d). To reproduce the predominant
dissociation process, the microstates enumeration is achieved
starting from the structure at pH = 7.0 and in an iterative man-
ner, implying that the most acidic or basic site will be ionized
for the next round calculation.

Challenges and future directions
The accurate prediction of pKa remains a challenging problem
owing to the data scarcity and the intrinsic complexity of the
property. Currently, the quantity and quality of open-source
data are unsatisfactory. The freely available database DataWar-
rior57 records the pKa values for 7912 chemicals but the amount
of the valid data after curation is reduced to 6188. If acidic pKa

and basic pKa are treated separately, the available data for each
model is only � 3000.37 To expand the modeling data, research-
ers adopted time-consuming QM calculation20 or tedious manual
collection from previous work and literature.55 Xiong et al. com-
plied a large S-pKa dataset containing 16 595 compounds with 17
489 pKa values but it is not publicly available.55 The authors also
pointed out that the difficulty of collecting and labeling multi-
step pKa data hinders the development of prediction models.
The iBOND database (https://ibond.nankai.edu.cn/) established
by Tsinghua and Nankai university is the largest academic data-
base, providing > 30 000 experimental pKa data in 39 solvents
with major ionization sites assigned by experts.1 The database
is easy to search but cannot be downloaded for model training.
In this case, leveraging computational pKa values

53 or enhancing
the collaboration between academia and industry58 are feasible
avenues. Furthermore, benchmark datasets comprising novel
and structurally diverse compounds related to real-life drug dis-
covery are required for comparative assessment of prediction
tools. The SAMPL blind challenges2,59 represent a solid start
but the data are still limited.

Another challenge is that complicated factors affect the ion-
ization of a particular group, including conformational flexibil-
ity,60 structural symmetry,60 unusual heterocycles,60 multiple
ionization centers,61 charge transfer in conjugated systems,61

tautomerism62 and intra- or inter-molecular interactions (hydro-
gen and halogen bonding15). One potential solution is to couple
domain knowledge and state-of-the-art deep learning (DL) algo-
rithms (such as 3D-informed GNN63,64) to better capture chemi-
cal patterns from training data.

Table 1 summarizes the QSAR-based in silico tools for pKa pre-
diction. We can conclude the current trends as follows: (i) a
growing number of open-source prediction tools are emerging;
(ii) data-driven features are gradually replacing handcrafted fea-
tures; (iii) more attention is shifting from establishing class-
specific models to building generic models. Compared with com-
mercial software, open-source tools still have major deficiencies.
First, they are unable to comprehensively solve three pKa-related
tasks, namely micro-pKa prediction, macro-pKa prediction and
the proportions of each microstate under different pH condi-
6 www.drugdiscoverytoday.com
tions.6 Second, the automation degree remains to be improved,
mainly reflected in tautomer enumeration, multi-step pKa predic-
tion and batch evaluation. Finally, limited attention is paid to
model interpretation, although it is a significant step for rational-
izing predictions to convince chemical scientists. Besides, it
might be instrumental in uncovering previous unknown chemi-
cal knowledge and guiding lead optimization. We hope the
follow-up studies can be targeted to overcome the above issues.
Concluding remarks
The in silico prediction of pKa has a profound impact on chemical
science, especially in drug discovery. In the past decades,
researchers have made remarkable progress in the field of pKa

prediction and developed various accessible tools. However,
there are still multiple issues that remain to be solved, mainly
attributed to insufficient data and the intricate effects derived
from structural factors.

As we know, the predictive power of QSAR-based models
highly depends on the quality of the input features. Fortunately,
the advent of GNN provides an intelligent solution to learning
the expressive features directly from molecular graphs. The supe-
riority of GNN in pKa prediction tasks, whether micro- or macro-
pKa, has been well confirmed in recent studies. In our opinion,
exploiting the synergy of expert knowledge and GNN architec-
ture has the potential to capture more structure–pKa relation-
ships from less data, thus overcoming the abovementioned
bottlenecks and constructing more-reliable models.

It is indispensable that we should comprehensively evaluate
the predictive ability and application domain of the current
approaches, which is beneficial to model selection and improve-
ment. We believe that the accumulation of high-quality data and
the emergence of powerful algorithms will enable the develop-
ment of accurate, efficient, versatile and interpretable pKa predic-
tion models. Regarding future applications, pKa prediction tools
can be utilized as a plugin in the workflow of artificial intelli-
gence (AI)-driven drug discovery; for example, property opti-
mization in molecule generation and property filter in virtual
screening. Thus, the models proposed by the scientific commu-
nity can play a part in manufacturing practice and reduce the risk
of failure veritably.
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