====
论文
====

======
Python
=====
=

=========
Tensorflow
=========

=======
PyTorch
=======

=====
Keras
=====

====
专题
====

====
链接
====

====
视频

====

=======
药物设计

=======

=======
材料科学
=======

============
经济学与金融学
==========
==


==============
Keras预训练模型
===========
===


在 ImageNet 上预训练过的用于图像分类的模型:

Xception

VGG16

VGG19

ResNet, ResNetV2, ResNeXt

InceptionV3

InceptionResNetV2

MobileNet

MobileNetV2

DenseNet NASNet

模型概览

模型 大小 Top-1 准确率 Top-5 准确率 参数数量 深度
Xception 88 MB 0.790 0.945 22,910,480 126
VGG16 528 MB 0.713 0.901 138,357,544 23
VGG19 549 MB 0.713 0.900 143,667,240 26
ResNet50 98 MB 0.749 0.921 25,636,712 -
ResNet101 171 MB 0.764 0.928 44,707,176 -
ResNet152 232 MB 0.766 0.931 60,419,944 -
ResNet50V2 98 MB 0.760 0.930 25,613,800 -
ResNet101V2 171 MB 0.772 0.938 44,675,560 -
ResNet152V2 232 MB 0.780 0.942 60,380,648 -
ResNeXt50 96 MB 0.777 0.938 25,097,128 -
ResNeXt101 170 MB 0.787 0.943 44,315,560 -
InceptionV3 92 MB 0.779 0.937 23,851,784 159
InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572
MobileNet 16 MB 0.704 0.895 4,253,864 88
MobileNetV2 14 MB 0.713 0.901 3,538,984 88
DenseNet121 33 MB 0.750 0.923 8,062,504 121
DenseNet169 57 MB 0.762 0.932 14,307,880 169
DenseNet201 80 MB 0.773 0.936 20,242,984 201
NASNetMobile 23 MB 0.744 0.919 5,326,716 -
NASNetLarge 343 MB 0.825 0.960 88,949,818 -

Top-1 准确率和 Top-5 准确率都是在 ImageNet 验证集上的结果。


我的Keras使用总结(4)——Application中五款预训练模型学习及其应用  
   
   
   
   

预训练模型

 

上海市浦东新区沪城环路999号