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Computationally predicting drug-target binding affinity (DTA) has attracted increasing
attention due to its benefit for accelerating drug discovery. Currently, numerous deep
learning-based prediction models have been proposed, often with a biencoder architecture
that commonly focuses on how to extract expressive representations for drugs and targets
but overlooks modeling explicit drug-target interactions. However, known DTA can pro-
vide underlying knowledge about how the drugs interact with targets that is beneficial
for predictive accuracy. In this paper, we propose a novel hierarchical graph representation
learning model for DTA prediction, named HGRL-DTA. The main contribution of our model
is to establish a hierarchical graph learning architecture to integrate the coarse- and fine-
level information from an affinity graph and drug/target molecule graphs, respectively, in a
well-designed coarse-to-fine manner. In addition, we design a similarity-based representa-
tion inference method to infer coarse-level information when it is unavailable for new
drugs or targets under the cold start scenario. Comprehensive experimental results under
four scenarios across two benchmark datasets indicate that HGRL-DTA outperforms the
state-of-the-art models in almost all cases.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

Drug discovery is an extremely time- and finance-consuming process that aims to locate a compound that can bind a
given target protein to prevent the growth of the related disease. Compared to drug-target interactions containing informa-
tion about whether a drug binds to a target, drug-target binding affinity (DTA) measured by dissociation constant (Kd), inhi-
bition constant (Ki), or the half maximal inhibitory concentration (IC50) provides richer information on the strength of the
interaction of a drug-target pair and can be viewed as an important indicator for rapidly screening desired candidate drugs.
Hence, efficient and accurate prediction of DTA by computational methods instead of identifying it by demanding experi-
mental assays can accelerate drug discovery.

Traditional physics-based approaches, such as computational molecular docking and molecular dynamics simulation, still
suffer from the challenge of scoring function design or computing resource consumption [42]. A promising remedy is the
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data-driven regression model. Earlier attempts of classic machine learning models, including but not limited to random for-
est, logistic regression, support vector machine, Kronecker regularized least square, and gradient boosting, have not pro-
duced enough generalization on DTA prediction [8,26,35] due to their overreliance on complicated feature engineering
that often heavily demands expert domain knowledge. Currently, deep learning for modeling DTA has become increasingly
relevant, as it is able to capture hidden complex information that is hard to abstract according to human experience [9] and
achieve remarkable success in predictive accuracy. The existing applications of deep learning in DTA prediction can be pre-
dominantly divided into two categories: structure- and nonstructure-based models [38].

Structure-based methods focus on the usage of spatial structure information of the protein-ligand complex. Most of them
voxelized the complex as a 3D-grid representation by a set of physical-based descriptors and then applied 3D convolutional
neural networks (CNNs) [10,29,36]. Several recent methods have developed geometry-oriented graph neural networks
(GNNs) to address distance encoding or the protein-ligand complex molecule graphs [18,50]. Although these structure-
based methods have achieved relatively high predictive performance, there is an apparent limitation: they do not work when
the 3D structure of the complex is unavailable. In practice, the accurate 3D structure of the protein-ligand complex or even
the protein is usually difficult to obtain, and predicting it by molecular docking or dynamics simulation remains challenging
[11,12].

In the past decade, several nonstructure-based models have emerged to overcome the abovementioned limitation. The
vast majority of them have a biencoder architecture similar to a Siamese network, where a pair of encoders separately learns
representations for drugs and targets, followed by several fully connected (FC) layers to map the concatenated representa-
tions of drug-target pairs into prediction scores [9,23,25]. With different forms of input encoding, the backbone networks are
distinct. Generally, both drug and target can be represented as 1D sequence data that are the simplifiedmolecular-input line-
entry system (SMILES) strings for drugs and amino acid sequences for targets, and some backbones commonly used in lan-
guage models have been adequately studied for DTA prediction, such as CNN [1,25,31], recurrent neural network (RNN) [11],
long short-term memory (LSTM) [47] and transformer [15]. Additionally, they can be converted into 2D graph data compris-
ing molecular graphs with atoms as nodes and bonds as edges for drugs and residue-residue contact maps for targets, and
then many GNN backbones are applied to DTA prediction [9,24]. The different combinations and hybrids of these encoders
are assembled into various deep learning models. However, these models lose predictive accuracy, as they isolatedly cope
with drugs and targets, ignoring realistic drug-target interactions whose benefit to DTA prediction has been demonstrated
in some works [8,15,33].

In this work, we propose to model the DTA data as a hierarchical graph, also called a graph of graphs with inspiration from
[3,7,41,43], where a set of graphs serve as nodes and constitute a graph. As shown in Fig. 1, in our constructed hierarchical
graph, the coarse-level affinity graph consists of drug nodes, target nodes, and affinity weight edges; meanwhile, drug and
target nodes are represented as molecular graphs, called fine-level graphs. We propose a novel hierarchical graph represen-
tation learning model for structure-free DTA prediction, named HGRL-DTA, to integrate coarse- and fine-level information in
the hierarchical graph. Specifically, we adopt simple yet effective graph convolutional networks (GCNs) [13] as backbone
encoders to learn coarse-level representations containing known DTA information (i.e., intermolecular interaction) and
fine-level representations implying intramolecular structures. Then, the coarse-level information is mixed into fine-level
representations in a well-designed coarse-to-fine manner to make full use of known DTA information. The fine-level repre-
sentation enhanced by coarse-level information is then further refined by GCN encoders and makes up drug and target rep-
resentations through readout operations. Finally, the representations for a drug and a target are concatenated together to
featurize the drug-target pair, and the prediction scores are produced by a multilayer perceptron (MLP) taking the drug-
target features as input. Moreover, to solve the cold start problem, we design a similarity-based representation inference
method to deduce the coarse-level information for the new drug or target node based on external drug-drug similarities
and target-target similarities. The advantages of our model lie in twofold aspects: 1) our model retains the biencoder
Fig. 1. An illustration of the hierarchical graph representation for DTA.
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architecture if the coarse-level GCN-block and coarse-to-fine fusion strategy are neglected, and doing so will maintain the
benefits of the in-depth representation extraction from drug and target molecule structure information; 2) our designed
coarse-to-fine strategy can adaptively mix coarse-level information into the fine-level representation to enhance its expres-
sive power. Experimental results demonstrate that even a simple GCN that uses our devised information fusion manner to
effectively integrate known DTA information can beat the state-of-the-art methods in almost all cases. The main contribu-
tions of our work are summarized as follows:

� We bring about a new perspective in modeling DTA that represents DTA as a hierarchical graph.
� We propose a novel hierarchical graph representation learning model for DTA prediction, named HGRL-DTA. HGRL-DTA
simulates intermolecular interactions and models intramolecular structures; moreover, it integrates hierarchical infor-
mation in a well-designed coarse-to-fine manner.

� We design a similarity-based representation inference method to complement the generalization of HGRL-DTA on pre-
dicting affinity values for the new drugs or targets, where the coarse-level information of the new drug or target unavail-
able from the model is substituted with the aggregation of that from its most similar known drugs or targets.

� Extensive experiments under four experimental scenarios on two benchmark datasets are conducted to evaluate the per-
formance of HGRL-DTA. Compared with several state-of-the-art methods, HGRL-DTA achieves significantly better perfor-
mance in almost all cases.

2. Related work

In line with the focus of our work, we first detail recent advances in nonstructure-based deep learning for DTA prediction
and then review some related literature about hierarchical graph representation learning.

2.1. Nonstructure-based deep learning for DTA prediction

Nonstructure-based deep learning methods aim to attribute DTA prediction to the intrinsic molecular nature of drugs and
targets. Consequently, most of these methods present a biencoder architecture in which a pair of encoders are applied to
learn latent representations for drugs and targets. DeepDTA [25] adopts a pair of CNNs to learn representations from drug
SMILES strings and target protein residue sequences. It uses a simple concatenation operation to obtain drug-target pair rep-
resentations that are then passed through an FC network to make DTA predictions. Based on DeepDTA, AttentionDTA [49]
replaces the concatenation operation with an attention mechanism. With the advances of GNNs in molecular modeling, they
have also been utilized in DTA prediction for handling drug or target molecule graphs. GraphDTA [23] retains the usage of
CNNs for the target sequence and investigated 4 versions of GNNs for drug molecule graphs. DGraphDTA [9] uses the residue
contact map of the protein as the target molecule graph and harnesses a pair of GNNs to handle drug and target graphs. Many
later works modified these models by designing encoders with more complex architectures [11,46,47], imposing additional
regularizers [12,17,19] or mixing multiview feature inputs [20,28,31]. For example, MGraphDTA [46] devises a multiscale
GNN for drug encoding and a multiscale CNN for target encoding; MONN [17] considers an additional task for predicting
pairwise atom-residue interactions; and DeepGS [20] encodes two input modalities of drugs by a graph attention network
(GAT) and a bidirectional gated recurrent unit (BiGRU). These models held a similar architecture comprised of isolated enco-
ders and ignored modeling the interaction between them. However, bridging the communication between the drug encoder
and the target encoder is more rational and interpretable. Some works have attempted to provide interpretable prediction by
attention links between drug and target encoders [1,24,16]. However, these attention weights stem from black-box opti-
mization, which may uncontrolledly lead to contradictions with reality. DeepAffinity+ [12] and MONN [17] use extra super-
vised tasks to induce interpretability but inevitably demand real or imprecise predicted structure information in the training
stage, although they remain structure-free in the testing stage.

For almost all models, known DTA only acts as supervisory signals for the target task. By contrast, known DTA has been
used to manually compile input features of drugs and targets for some machine learning-based methods [8,33]. Few deep
learning studies have investigated the benefit of known DTA information for final prediction. BERT-GCN [15] treats observed
drug-target interactions as a graph where the nodes are attributed by the embeddings produced by a pair of pretrained BERT
models. Then, a GCNwas deployed on this attributed graph to simulate information interaction between drugs and targets. It
finally adopted a previous FC network-based predictor to make DTA predictions. If stacking the pretrained BERTs, BERT-GCN
actually revises the previous biencoder architecture by inserting a GCN before the decoder. Compared to some previous
unsteerable attention-based interaction modules, its GCN directly models realistically meaningful drug-target interactions.
However, there appear to be two deficiencies: 1) the GCN could be easily overfitted and perform suboptimally; 2) it readily
oversmoothes the drug and target information, which could make the representations undistinguishable. Hence, how to
more effectively integrate known DTA information remains challenging.

2.2. Hierarchical graph representation learning

Recent years have witnessed the powerful expressivity of GNNs in graph representation learning. Several works observe
that some real-life data can be modeled as a graph representing interactions among a set of graph-structured entities [3,41],
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such as drug-drug interactions (DDIs), drug-target interactions (DTIs) and protein-protein interactions (PPIs). BiGNN [3] and
GoGNN [41] learn the graph-level representations for the graph-structured entities by a GNN and use another GNN to handle
the entity interaction graph in which the learned representations serve as initial node features. This model architecture can
naturally be extended to DTA prediction. However, the bottom GNN for molecular modeling suffers from troublesome train-
ing, such as inadequate training due to gradient vanishing, for which it may not be able to adequately capture the molecular
structure. Moreover, it cannot work under the inductive settings that expect it to provide predictions for new nodes unseen
in the entity interaction graph at the training stage. Accordingly, how to design effective information interactions between
the entity graphs (i.e., molecular graph in this paper) and the interaction graph (i.e., affinity graph in this work) is a key chal-
lenge in hierarchical graph learning.

3. Preliminaries

This section introduces some core definitions for the convenience of describing and formulating our proposed method
and target task.

Definition 3.1 (Affinity Graph). An affinity graph is a weighted graph G ¼ V;E;Wf g depicting drug-target binding relations,
where V is the node set containing M drugs and N targets (i.e., jVj ¼ M þ N), E is the set of edges representing drug-target
pairs, and W is the set of edge weights measuring the relative binding strength of the corresponding drug-target pairs. More
specifically, the edge weights are assigned according to the normalized drug-target binding affinities that are scaled to 0;1½ �
by min-max normalization, where a nonzero value denotes known affinity. Let A 2 0;1½ �jVj�jVj be the adjacency matrix of G.
Definition 3.2 (Molecular Graph). One drug molecule can be viewed as a graph with atoms as nodes and covalent bonds as
edges, while one target molecule can also be formulated as a residue contact graph with residues as nodes and their contacts
as edges [9]. Let Gu ¼ Vu;Euf g denote the molecular graph of u 2 V. Note that u is a drug or a target.
Definition 3.3 (Hierarchical Graph). The graph with molecular graphs as nodes and molecular interactions as edges is called
the hierarchical graph, as it consists of a coarse-level affinity graph representing intermolecular relations and fine-level
molecular graphs containing fine intramolecular structure information. Let H ¼ Guf gu2V;E;W

� �
denote the hierarchical

graph.
Definition 3.4 (Drug-Target Binding Affinity Prediction). Given the hierarchical graph H and the observed drug-target bind-
ing affinity matrix Y 2 RM�N

P0 , our goal of predicting drug-target binding affinities is to train a hierarchical graph representa-
tion learning framework H H;Y;xð Þ to recover the unobserved entries (i.e., zeros) in Y, where x is the trainable parameter.
4. Model framework

In this section, we introduce the proposed hierarchical graph representation learning model for drug-target binding affin-
ity prediction, named HGRL-DTA. HGRL-DTA builds information propagation and fusion from the coarse level to the fine level
over the hierarchical graph. By doing so, each atom or residue is able to know about its molecule assignment and how the
molecule interacts with other molecules, which leads to refined drug and target representations. Concretely, we first utilize
two GCN-based blocks: one including a GCN encoder deployed on the affinity graph G encoding drug-target binding affinity
information into coarse-level drug/target representations and the other containing a pair of GCN encoders operating on drug
and target molecule graphs to learn fine-level atom/residue representations frommolecular structural information. Then, we
enhance the fine-level representations by a coarse-to-fine information flow from nodes in G to atoms/residues inside the
corresponding molecular graphs and further refine the enhanced representations by another pair of GCN encoders followed
by readouts to obtain final representations of drugs and targets. Finally, the concatenation of a pair of representations from
one drug and one target is taken as the representation of the drug-target pair and fed into an MLP to make binding affinity
predictions. Fig. 2 illustrates the framework of our proposed HGRL-DTA model.

4.1. Fine-level graph representation learning on molecular graphs

As in previous work [9,24] that capitalized on graph neural networks deployed over molecular graphs to encode fine
atom/residue-level chemistry and structure information into informative representations of drugs and targets, we still
expect their dominance over drug-target binding affinity prediction, conforming to the consensus that structure is able to
determine function. We simply adopt GCNs as the backbone of modeling the molecular graphs.

Mathematically, for a molecular graph Gu ¼ Vu;Euf g, the iterative feed-forward graph convolution layer can be denoted
as:
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Fig. 2. Overview of HGRL-DTA.
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h lð Þ
v ¼ ReLU

X
v 02N vð Þ[ vf g

1ffiffiffiffiffiffiffiffiffiffiffi
dvdv 0

p h l�1ð Þ
v 0 W lð Þ

 !
ð1Þ
where ReLU �ð Þ denotes the rectified linear unit (ReLU) activation function, h lð Þ
v denotes the hidden state at the l-th layer for

node v 2 Vu;N vð Þ is the neighborhood set of node v ; dv ¼ 1þ jN vð Þj is the degree of node v in graph Gu with a self-loop,

andW lð Þ is the weight parameter at the l-th layer. Note that we use the self-loop trick to maintain the information of the node
itself when it receives the neighbors’ message at each layer. By the message passing scheme of GCNs that iteratively aggre-
gates localized information, each atom or residue can be aware of its surrounding structure and obtain a high-level repre-
sentation that contains intramolecular local structure information.

In this paper, we utilize the physics and chemistry attribution of the node as the initial embedding h 0ð Þ
v and two isolated

GCNs in this block with one shared for all drug molecules and the other for target molecules. We denote the fine-level repre-

sentation of atom/residue v in the molecular graph Gu output as hu
v ¼ gu Gu;h

0ð Þ
v

� �
, where gu represents the GCN model in

this block.

4.2. Coarse-level graph representation learning on the affinity graph

As mentioned before, modeling drug-target interactions is believed to benefit drug-target binding affinity prediction. In
this block, we build a GCN on the affinity graph to learn discriminable node representations. Due to the nature of GCNs, node
representations encode information about how drugs and targets interact with each other.

Formally, given the affinity graph G ¼ V;E;Wf g with its adjacency matrix A, we renormalize the adjacency matrix by
Laplacian normalization:
bA ¼ D�1
2AD�1

2 ð2Þ

where D denotes a diagonal matrix with diagonal elements Di;i ¼

P
jAi;j. Then, taking an initial graph signal X as inputs, the

GCN outputs drug and target representations:
Hc ¼ gc G;Xð Þ ¼ ReLU bA ReLU bAXW 1ð Þ
c

� �
W 2ð Þ

c

� �
ð3Þ
where Hc with jVj rows stores drug and target representations, gc represents the GCN model in this block, and W 1ð Þ
c and W 2ð Þ

c

are trainable parameters. This encoder captures affinity relationships of directly connected drug-target pairs (i.e., 1-hop
neighbors) at the first layer and recognizes the potential similar patterns at the second layer by aggregating the information
of other drugs/targets linked to the same target/drug node (i.e., 2-hop neighbors) for each drug/target node, as the empirical
assumption says that similar drugs are more likely to interact with the same target and vice versa.

There seems to be a plight in the training process of GCNs of interest in node representations where oversmoothing leads
to indistinguishable representations. To alleviate it, we introduce a regularization technique, DropEdge [32], which randomly
removes a certain number of edges from the input graph at each training epoch. We denote the coarse-level representation
of u 2 V as hu

c , that is, the u-th row of Hc .
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4.3. Coarse-to-fine information fusion and further representation refinement

In this block, we first design a coarse-to-fine manner to mix coarse- and fine-level information aiming at enhancing the
fine-level representations instead of spoiling their leading role in the final prediction task. Then, the enhanced representa-
tions are further refined by a pair of GCNs operating on drug and target molecule graphs. This process is illustrated in Fig. 3.

Given the node u 2 V in the affinity graph G with the corresponding molecular graph Gu, we transfer the coarse-level
representation hu

c for u 2 V in G into the fine-level representation of each atom/residue (e.g., hu
v for v 2 Vu) in Gu. Formally,

the enhanced representation ĥu
v for the atom/residue v can be defined as:
{ }uvh
bhu
v ¼ hu

v � f c hu
c

� �	 
jj hu
v � f c hu

c

� �	 
 ð4Þ

where jj denotes the concatenation operation, f c is an MLP in this coarse-to-fine fusion module to harmonize the coarse-level
representation with the fine-level representation, and � and � denote element-wise addition and subtraction operations,
respectively. Through this design, each atom/residue can know which molecule it belongs to and how the molecule interacts
with other molecules, as the coarse-level representations learned by the most expressive GCN that models the realistic drug-
target interactions are distinguishable. Furthermore, the fine-level representation can adaptively receive coarse-level infor-
mation. This is because there is an adaptive trade-off between the addition and subtraction operations when the enhanced
representation is squashed and refined in some subsequent neural layers. It is worth mentioning that we adopt two MLPs for
drug and target nodes to keep the coarse-level representation aware of node type.

Next, we reuse GCNs such as Eq. (1) to further refine the enhanced representations. There are two reasons for this design:
1) smoothing and reconciling the adaptive hierarchical information fusion; 2) avoiding blurring fine molecule structure
information in the enhanced representations and further emphasizing the decisive importance of molecular structure to
the prediction task. Specifically, a pair of GCNs deployed on drug and target molecule graphs take the enhanced represen-
tations as inputs and output the final representation for atoms or residues. We denote the final representation for v in Gu

as ~hu
v ¼ gr Gu; ĥu

v

� �
, where gr represents the GCN model in this refinement module.

Finally, the readout of the model that generates final drug/target representations from their atom/residue representations
is given by:
hu ¼ f r
1

jVuj
X
v2Vu

~hu
v

 !
ð5Þ
where f r denotes an MLP in this readout module. Similar to the above design, two MLPs are used for drugs and targets. We

denote the final representations for drug d and target t as hd and ht .

4.4. Drug-target binding affinity prediction

In this study, binding affinity prediction is a regression task. The concatenation of the drug representation hd and the tar-
get representation ht is treated as the representation of the drug-target pair d; tð Þ. Then, we feed the drug-target pair repre-
sentation into an MLP to obtain the prediction affinity score ŷd;t:
Average

u
ch

rgrg

cfcf

rfrf

ˆ{ }uvh
{ }uvh

uh

Fig. 3. Pipeline of coarse-to-fine information fusion and further representation refinement.
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ŷd;t ¼ f p hd jj ht
� �

ð6Þ
where f p is an MLP with three fully connected linear layers. We use the mean squared error (MSE) as the loss function as
follows:
L ¼ 1
jTj

X
d;tð Þ2T

yd;t � ŷd;t
� �2 ð7Þ
where T 	 E is the sampled training set and yd;t denotes the ground-truth affinity value.
4.5. Prediction for new drugs or targets

Our proposed HGRL-DTA can make full use of known drug-target binding affinity information, but it fails to directly
predict binding affinities involving new drugs or targets (i.e., binding affinities between new drugs/targets and known
targets/drugs or between new drugs and new targets) as the GCN on the affinity graph cannot be naturally generalized to
inductive settings.

To solve this problem, we devise a similarity-based representation inference method to speculate the coarse-level
information of those drugs or targets unobserved in the training stage based on external drug-drug similarities or target-
target similarities, which is inspired by [48], and the inferred coarse-level information is used for coarse-to-fine information
fusion in the test stage. In detail, after fixing our HGRL-DTA model trained on the observed hierarchical graph
H ¼ Guf gu2V;E;W

� �
, for a new molecule Gû with û R V, we construct its coarse-level information zûc based on the infor-

mation from the set of molecules Nû 	 V that contains the simK most similar molecules ranked according to the external
similarities:
zûc ¼
X
u2Nû

sim u; ûð Þ � f c hu
c

� � ð8Þ
where sim u; ûð Þ denotes the normalized external similarity between molecule û and observed molecule u. Then, we perform
the coarse-to-fine fusion by:
bhû
v ¼ hû

v � zûc
h i

jj hû
v � zûc

h i
ð9Þ
Finally, the enhanced representation ĥû
v is fed into the fixed subsequent layers to make predictions.
5. Experiments

In this section, we first present the datasets, evaluation metrics, and experimental settings used in our experiments. Then,
we compare the HGRL-DTA model with several state-of-the-art methods under four experimental scenarios. Finally, we con-
duct further and deeper analyses on HGRL-DTA with ablation studies, parameter analysis, visualization analysis, computa-
tional complexity analysis, and case studies.
5.1. Datasets

To evaluate the performance of our proposed model on the binding affinity prediction task, two classic benchmark data-
sets, the Davis dataset [5] and the KIBA dataset [37], were chosen as benchmark datasets in our experiments. We introduce
their details as follows:

� Davis. The Davis dataset contains 68 unique drugs and 442 unique targets, with 30,056 kinase dissociation constant Kd

values as drug-target affinities. [8] [8] converted the Kd values into log space as pKd ¼ �log10 Kd=10
9

� �
. The preprocessed

Davis dataset is filled with affinities ranging from 5.0 to 10.8, where the boundary value 5.0 is regarded as the true neg-
ative drug-target pair that either has very weak binding affinities or is not detected in the wet lab experiment. The Davis
dataset provides the SMILES strings of the drugs and the protein sequences of the targets.

� KIBA. The KIBA dataset introduces KIBA scores as drug-target affinities, based on the integration of kinase inhibitor bioac-
tivities from various sources, such as Ki;Kd, and IC50 [37]. The dataset originally consists of 52,498 drugs and 467 targets
with 246,088 affinities. [8] [8] filtered it to comprise 118,254 affinities between 2,111 unique drugs and 229 unique tar-
gets with at least 10 affinities of each drug or target. The preprocessed KIBA dataset contains affinity values ranging from
0.0 to 17.2, and NaN values indicate that there are no experimental values for corresponding drug-target pairs. The KIBA
dataset also contains drug SMILES strings and target protein sequences.
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In our experiments, the raw datasets were preprocessed to obtain the input graphs for the proposed model. In the following,
we introduce the construction process of the input graphs, i.e., the affinity graph and the molecular graph defined in
Section 3:

� Affinity Graph. We constructed the affinity graph by addressing the known affinities as weighted edges and encoding
each node (i.e., drug or target) as a multidimensional binary feature vector, which consists of two kinds of information:
one-hot encoding of the node type (i.e., either drug-type or target-type) and one-hot encoding of the neighbor nodes (i.e.,
row vector in the connectivity matrix of the affinity graph). It should be noted that each target connects with too many
(on average 518 and up to 1,452) drugs in the constructed affinity graph on the KIBA dataset. However, it has been the-
oretically and empirically proven that nodes with high degrees are more likely to suffer from oversmoothing in multilayer
GNN-based models [4]. To handle this issue, we selectively dropped edges out from the affinity graph in the data prepro-
cessing phase, for which only the topK highest affinity edges related to each target were preserved and other connected
ones were removed. Meanwhile, we performed the same operation for each drug. Note that we selectively removed affini-
ties only when conducting experiments on the KIBA dataset.

� Molecular Graph. We transformed the SMILES strings of drugs into their corresponding graphs with the open-source
cheminformatics software RDKit [14]. A group of atomic features adopted from DeepChem [30] were used as the initial
drug molecule graph signals. Similarly, an open-source and highly efficient protein structure prediction approach, Pcon-
sc4 [22], was adopted in our work to generate target molecule graphs for mining useful topological information hidden in
protein sequences. The Pconsc4 approach transforms the protein sequences of targets into their corresponding contact
maps, i.e., residue-residue association matrices, whose entries are the Euclidean distance-based contacts. In this contact
map, there exists a contact between two atoms if the Euclidean distance between them is less than a specified threshold
[44]. We set the threshold as 0.5 according to the previous study DGraphDTA [9]. A set of residue features extracted by
DGraphDTA [9] was used as the initial attributions of the residues in the target molecule graph.

5.2. Evaluation metrics

In this study, we followed previous works [9,25] and employed four classic metrics to evaluate the performance of the
models: mean squared error (MSE), concordance index (CI), r2m, and Pearson correlation coefficient (PCC). For each model,
we reported the mean and the standard deviation (std) of these metrics across ten runs with different random seeds.

MSE is a common measure metric for regression tasks that measures the distinction between the real value and the pre-
dicted value. MSE is defined in Eq. (10).
MSE ¼ 1
T

XT
i¼1

yi � ŷið Þ2 ð10Þ
where T denotes the size of the test set and yi and ŷi denote the real value and the predicted value of the i-th test sample,
respectively.

CI measures the order concordance between true values and predicted values. This metric ranges from 0 to 1, where a
value closer to 1 denotes a better result. The CI formula is given as follows:
CI ¼ 1
Z

X
yi>yj

h ŷi � ŷj
� �

;h xð Þ ¼
1; if x > 0
0:5; if x ¼ 0
0; if x < 0

8><>: ð11Þ
where Z represents the normalization constant and h �ð Þ is the step function.
The r2m metric involved in DeepDTA [25] is used to evaluate the external predictive potential of quantitative structure-

activity relationship (QSAR) models. A model with a larger r2m value for the test set is regarded as a more acceptable model.
We calculate the r2m metric as follows:
r2m ¼ r2 � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r20

q� �
ð12Þ
where r2 and r20 are the squared correlation coefficients with and without intercept, respectively.
The PCC measures the linear correlation between true values and predicted values, which ranges from �1 to 1, where 1,

�1, and 0 indicate complete correlation, reversed correlation, and no correlation, respectively. The PCC is calculated through
Eq. 13.
PCC ¼ cov ŷ; yð Þ
r ŷð Þr yð Þ ð13Þ
where cov ŷ; yð Þ is the covariance between the predicted value ŷ and the real value y, and r �ð Þ indicates the standard
deviation.
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5.3. Experimental settings

Following previous works [9,25], we divided each dataset into training and test sets in a 5:1 ratio. When conducting
experiments, we trained the proposed model and comparison methods on the training set and evaluated them on the test
set. We conducted 5-fold cross validation (5-CV) on the training set to select the best hyperparameters from fixed ranges for
our proposed model. For all the comparison methods, the hyperparameters were set as the optimal values provided in the
corresponding studies [9,23,25,49].

In this study, to comprehensively verify the generalization and robustness of the models, we considered the following
four experimental scenarios [26]:

� S1: Entries in the drug-target matrix Y are randomly selected for testing.
� S2: Row vectors in the drug-target matrix Y are randomly selected for testing.
� S3: Column vectors in the drug-target matrix Y are randomly selected for testing.
� S4: The intersection set of the row vectors in scenario S2 and the column vectors in scenario S3 is selected for testing, and
their nonintersectional parts are used for neither training nor testing.

In scenario S1, both the drugs and the targets of the test drug-target pairs can be observed in the training phase. As the most
widely used experimental scenario in previous studies, scenario S1 assumes that some known drug-target affinities are ran-
domly masked, and our aim is to infer these masked affinities using the known affinities. Compared to scenario S1, scenarios
S2 and S3 have recently attracted more attention in real-world applications, where only part of the drug/target information
is available during the training phase and the models need to predict affinities for new drugs/targets without any known
affinities. Scenario S4 corresponds to the most challenging case in computational works, which aims to predict affinities
between unknown drugs and targets.

We implemented our proposed model with PyTorch 1.4.0 [27] and PyTorch Geometric 1.7.0 [6]. We ran HGRL-DTA on our
workstation with 2 Intel(R) Xeon(R) Gold 6146 3.20 GHz CPUs, 128 GB RAM, and 2 NVIDIA 1080 Ti GPUs. Table 1 summarizes
the hyperparameter settings of HGRL-DTA. The source code is freely available at https://github.com/Zhaoyang-Chu/HGRL-
DTA.

5.4. Comparison with state-of-the-art methods

To demonstrate the superiority of the proposed model, we conducted experiments to compare our approach with the fol-
lowing state-of-the-art methods:

� DeepDTA [25] employs CNNs to learn 1D drug and target representations from drug SMILES strings and target protein
sequences.

� AttentionDTA [49] utilizes 1D CNNs to learn sequence representations of drugs and targets and an attention mechanism
to find the weight relationships between drug subsequences and protein subsequences.

� GraphDTA [23] models drugs as molecular graphs to capture the bond information between atoms by GNNs and lever-
ages CNNs to learn 1D representations of target proteins. This method has four variants based on different GNN back-
bones: GCN [13], GAT [40], GIN [45], and GAT-GCN that combines the former two. We selected the variants
performing best on the Davis dataset and the KIBA dataset for comparison.

� DGraphDTA [9] constructs target molecule graphs from the corresponding protein sequences via a protein structure pre-
diction method and applies GNNs to mine structural information hidden in drug molecule graphs and target molecule
graphs.
Table 1
Model configuration of HGRL-DTA.

Hyperparameter Value Hyperparameter Value

Learning rate 0.0005 gc {512, 256}
Batch size 512 gu for drug {78}

Epochs under S1 2000 gu for target {54}
Epochs under S2, S3, S4 200 f c for drug {1024, 78}

DropEdge rate 0.2 f c for target {1024, 54}
Dropout rate 0.1 gr for drug {156, 312}

simK for drug (simKd) 2 gr for target {108, 216}
simK for target (simKt) 7 f r for drug {1024, 128}

topK for drug 40 f r for target {1024, 128}
topK for target under S1, S3 150 f p {1024, 512, 1}
topK for target under S2, S4 90 - -

Note: �f g denotes the layer dimension of neural networks.
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� MGraphDTA [46] argues against the existing shallow GNNs and builds a superdeep GNN with 27 stacked layers to encode
the multiscale molecular structures of drugs. For targets, this method applies a multiscale convolutional neural network
to extract their multiscale sequence features.

� BERT-GCN [15] adopts a pair of pretrained BERT models to produce sequence representations for drugs and targets and
then models the drug-target binding affinities through a GCN to update drug/target representations. In this method, the
BERT representations of drugs and targets are utilized as initial node representations for the GCN. It should be noted that
this method is limited by the transductive nature of GCN and thus cannot predict binding affinities involving new drugs or
targets. For that, we only consider its predictive performance in scenario S1. Since the source code of BERT-GCN is not
available, we implemented a variant model referring to the idea of this method for comparison, i.e., BERT-GCN-V replaces
the pair of BERT models with a pair of GCN encoders deployed on the drug molecule graphs and the target molecule
graphs.

Table 2 shows the performances of our proposed HGRL-DTA and the state-of-the-art methods on the two benchmark
datasets under four experimental scenarios. According to the experimental results, we can observe that the proposed
HGRL-DTA model achieves the best performance compared to the state-of-the-art methods in most cases, which demon-
strates the generalization and robustness of our model. In the four experimental scenarios, over the best baseline models,
we achieve 19.0% (S1), 3.1% (S2), and 2.4% (S4) improvements in MSE on the Davis dataset and 3.1% (S1), 5.2% (S2), 11.5%
(S3), and 10.4% (S4) improvements in MSE on the KIBA dataset. Across the four metrics, most of the results show that
HGRL-DTA has obtained the optimal or suboptimal standard deviation compared with other baseline methods, which
demonstrates the relative stability of our proposed predictive model.

Among all baselines, the performances of the sequence-based methods (i.e., DeepDTA and AttentionDTA) are relatively
poor due to the inadequate exploitation of the molecular chemical structures. This indicates that simply modeling drugs
as SMILES strings and targets as protein sequences is not sufficient to capture the intrinsic properties of molecules. By con-
trast, the graph-based models (i.e., GraphDTA, DGraphDTA, and MGraphDTA) represent molecules as molecular graphs to
take advantage of their chemical structural information, which produces better predictive performance. However, these
graph-based models mainly focus on encoding molecular structures but ignore the topological affinity relationships between
drugs and targets, which may be the reason why they are slightly inferior to our proposed model in most cases. In scenario
S3, it is worth mentioning that although MGraphDTA performs slightly better than HGRL-DTA in terms of MSE, r2m, and PCC
on the Davis dataset, it consists of more complex structures, which may capture deeper molecular structural information to
some extent, and we will study it in future work to further improve the prediction performance. Compared with state-of-the-
Table 2
Performances of HGRL-DTA and comparison methods on the two benchmark datasets.

Architecture Davis KIBA

MSE# (std) CI" (std) r2m" (std) PCC" (std) MSE# (std) CI" (std) r2m" (std) PCC" (std)

S1 DeepDTA 0.245 (0.014) 0.888 (0.004) 0.665 (0.015) 0.842 (0.004) 0.181 (0.007) 0.868 (0.004) 0.711 (0.021) 0.864 (0.003)
AttentionDTA 0.233 (0.006) 0.889 (0.002) 0.676 (0.020) 0.845 (0.004) 0.150 (0.002) 0.883 (0.001) 0.760 (0.018) 0.888 (0.001)
GraphDTA 0.243 (0.005) 0.887 (0.002) 0.685 (0.016) 0.839 (0.003) 0.148 (0.006) 0.891 (0.001) 0.730 (0.015) 0.895 (0.001)
DGraphDTA 0.216 (0.003) 0.900 (0.001) 0.686 (0.015) 0.857 (0.002) 0.132 (0.002) 0.902 (0.001) 0.800 (0.011) 0.903 (0.001)
MGraphDTA 0.225 (0.003) 0.889 (0.006) 0.708 (0.008) 0.850 (0.001) 0.129 (0.001) 0.903 (0.001) 0.805 (0.006) 0.903 (0.001)
BERT-GCN-V 0.205 (0.002) 0.881 (0.002) 0.689 (0.005) 0.866 (0.001) 0.170 (0.001) 0.876 (0.001) 0.696 (0.006) 0.873 (0.001)

HGRL-DTA 0.166 (0.002) 0.911 (0.002) 0.751 (0.006) 0.892 (0.001) 0.125 (0.001) 0.906 (0.001) 0.789 (0.017) 0.907 (0.001)
S2 DeepDTA 0.985 (0.114) 0.548 (0.045) 0.027 (0.022) 0.126 (0.109) 0.494 (0.070) 0.747 (0.012) 0.337 (0.026) 0.623 (0.023)

AttentionDTA 0.869 (0.053) 0.642 (0.028) 0.079 (0.024) 0.289 (0.048) 0.506 (0.018) 0.744 (0.005) 0.298 (0.015) 0.618 (0.006)
GraphDTA 0.801 (0.038) 0.659 (0.015) 0.160 (0.019) 0.416 (0.022) 0.475 (0.047) 0.753 (0.002) 0.382 (0.007) 0.652 (0.002)
DGraphDTA 0.818 (0.012) 0.646 (0.006) 0.114 (0.005) 0.356 (0.010) 0.458 (0.008) 0.754 (0.002) 0.362 (0.012) 0.622 (0.004)

MGraphDTA 0.907 (0.033) 0.599 (0.022) 0.082 (0.021) 0.298 (0.044) 0.469 (0.049) 0.752 (0.002) 0.366 (0.016) 0.638 (0.005)
HGRL-DTA 0.776 (0.019) 0.684 (0.007) 0.163 (0.015) 0.422 (0.018) 0.434 (0.007) 0.757 (0.003) 0.370 (0.010) 0.653 (0.003)

S3 DeepDTA 0.552 (0.086) 0.729 (0.017) 0.258 (0.029) 0.523 (0.028) 0.732 (0.197) 0.676 (0.016) 0.273 (0.026) 0.587 (0.033)
AttentionDTA 0.436 (0.017) 0.787 (0.018) 0.304 (0.022) 0.588 (0.027) 0.529 (0.039) 0.693 (0.008) 0.254 (0.024) 0.592 (0.022)
GraphDTA 0.860 (0.083) 0.666 (0.012) 0.134 (0.014) 0.379 (0.018) 0.469 (0.089) 0.710 (0.005) 0.388 (0.013) 0.627 (0.009)
DGraphDTA 0.445 (0.019) 0.788 (0.009) 0.289 (0.016) 0.558 (0.017) 0.364 (0.010) 0.718 (0.007) 0.429 (0.022) 0.671 (0.009)
MGraphDTA 0.359 (0.007) 0.813 (0.008) 0.415 (0.008) 0.681 (0.005) 0.483 (0.055) 0.674 (0.008) 0.342 (0.007) 0.617 (0.011)

HGRL-DTA 0.383 (0.010) 0.816 (0.008) 0.375 (0.018) 0.621 (0.012) 0.322 (0.014) 0.741 (0.004) 0.502 (0.016) 0.729 (0.007)

S4 DeepDTA 0.767 (0.091) 0.508 (0.057) 0.009 (0.012) 0.015 (0.098) 0.700 (0.075) 0.627 (0.009) 0.140 (0.017) 0.401 (0.025)
AttentionDTA 0.679 (0.021) 0.554 (0.030) 0.005 (0.008) 0.036 (0.062) 0.609 (0.021) 0.629 (0.007) 0.143 (0.015) 0.407 (0.022)
GraphDTA 0.988 (0.096) 0.569 (0.017) 0.020 (0.006) 0.141 (0.020) 0.676 (0.113) 0.641 (0.003) 0.149 (0.007) 0.404 (0.009)

DGraphDTA 0.658 (0.026) 0.569 (0.008) 0.031 (0.005) 0.180 (0.015) 0.594 (0.022) 0.632 (0.009) 0.148 (0.013) 0.403 (0.019)

MGraphDTA 0.764 (0.020) 0.507 (0.021) 0.001 (0.001) 0.011 (0.036) 0.660 (0.094) 0.627 (0.007) 0.152 (0.012) 0.418 (0.018)
HGRL-DTA 0.642 (0.016) 0.602 (0.009) 0.044 (0.005) 0.215 (0.013) 0.532 (0.008) 0.642 (0.004) 0.207 (0.009) 0.491 (0.010)

Note: The best score in each column is in bold and the second best score is underlined in every scenario.
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art models, HGRL-DTA can capture the fine-level information hidden inside the intrinsic molecular properties and the
coarse-level information derived from the topological affinity relationships synergistically and fuse such hierarchical infor-
mation to enhance the representations of drugs and targets, which significantly facilitates the performance of predicting
drug-target binding affinities.

Notably, BERT-GCN-V is similar to our approach in that it also fuses fine-level molecular structural information and
coarse-level binding affinity information but exhibits relatively poor predictive performance. This may be because BERT-
GCN-V takes a fine-to-coarse information fusion manner, in which the fine-level drug/target representations encoding the
molecular structure are smoothed out in the subsequent coarse-level GCN encoder, which spoils the dominant role of the
fine-level molecular structural information in the drug-target binding affinity prediction task. In contrast to BERT-GCN-V,
we design a coarse-to-fine information fusion manner to enhance the fine-level molecular representations with the
coarse-level binding affinity information, after which we reuse the GCN on molecular graphs to refine the enhanced repre-
sentations to avoid blurring the fine-level molecular structural information. Such results show that our coarse-to-fine infor-
mation fusion manner is more reasonable and effective.

In addition, we can observe that all the models perform best in scenario S1, have relatively poor performance in scenarios
S2 and S3, and perform worst in scenario S4. With more unknown drugs or targets in the four experimental scenarios, the
predictive performance of the models significantly declines. Different from scenario S1, scenarios S2, S3, and S4 test the gen-
eralization and robustness of the models for new drugs or targets, which is another necessary measurement of performance
evaluation. Through the similarity-based representation inference method, HGRL-DTA infers coarse-level information of new
drugs/targets using the learned representations of known drugs/targets, which can make full use of the known affinity and
similarity information to improve the generalization and robustness of the model. As illustrated in Table 2, in scenarios S2,
S3, and S4, the proposed HGRL-DTA model obtains the best performance in most cases, which indicates that HGRL-DTA is
more generalizable and robust than baseline methods when only part of the drug/target information is known.
5.5. Ablation studies

To investigate the important factors that impact the predictive capacity of our model, we conducted ablation studies with
the following variants of HGRL-DTA in scenario S1:

� HGRL-DTA without the coarse-level affinity graph (w/o CAG) learns only fine-level representations on molecular graphs
without the GCN deployed on the coarse-level affinity graph. Note that this variant keeps the same number of GCN iter-
ations on the molecular graph as HGRL-DTA, where GCN iterations in the representation refinement procedure of HGRL-
DTA are also considered.

� HGRL-DTA without fine-level molecular graphs (w/o FMG) only applies a GCN encoder to the coarse-level affinity graph
without considering the fine-level molecular graphs. The MLP-based predictor is directly applied with the input of the
coarse-level representations of drugs and targets for the binding affinity prediction task.

� HGRL-DTA without weighted affinities (w/o WA) addresses the affinity graph as an unweighted graph, which only con-
siders binary interaction relationships instead of continuous affinities.

� HGRL-DTA-L is a variant implementation of our idea on late coarse-to-fine information fusion, which moves the informa-
tion fusion procedure behind the molecular representation readout operation. Note that this variant keeps the same num-
ber of GCN iterations on the molecular graph as HGRL-DTA.

Fig. 4 compares HGRL-DTA with its four variants on the two benchmark datasets. Overall, the proposed HGRL-DTA out-
performs other variants, which demonstrates the effectiveness of the hierarchical graph learning architecture. In detail,
HGRL-DTA (w/o CAG) and HGRL-DTA (w/o FMG) have the most significant performance gaps with HGRL-DTA. These results
suggest that coarse-level and fine-level components contribute the most to our model and removing either component will
severely undermine its predictive performance. In addition, HGRL-DTA (w/o WA) performs worse than HGRL-DTA since it
only constructs the affinity graph using binary interaction relationships, which loses more realistic information hidden in
continuous affinities. We also observe that HGRL-DTA-L is not far from HGRL-DTA on MSE, CI, and PCC and even produces
better performance on the r2m metric, which suggests that coarse-to-fine information fusion is beneficial to drug-target bind-
ing affinity prediction independent of its position in the model. In our experiments, we mainly focus on the MSE metric and
select models and hyperparameters based on the 5-CV result of it rather than of r2m; hence, the HGRL-DTA framework is cho-
sen as our main model.
5.6. Parameter analysis

To further validate the effectiveness of the similarity-based representation inference method for inferring new drugs or
targets, we analyzed the impacts of two major hyperparameters simKd and simKt used in this method.

We conducted the parameter study experiment on the Davis dataset by changing the hyperparameters simKd and simKt

from 1 to 8 while keeping other hyperparameters fixed as default settings. We tested simKd under scenario S2, where the
drug is unseen, and simKt under scenario S3, where the target is unknown. To analyze the effect of the inferred representa-
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Fig. 4. Results of ablation experiments.
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tions of new drugs or targets (i.e., nodes absent in the affinity graph) more directly, we observe the performance variation of
HGRL-DTA w/o FMG.

As shown in Fig. 5, the similarity-based representation inference method influences the predictive performance of HGRL-
DTA w/o FMG by changing simKd and simKt . We can see that the model performs best when simKd ¼ 2 and simKt ¼ 7. With
the increase in simKd or simKt , aggregating more representations of known drugs/targets to infer unseen drugs/targets can
encodemore useful information, which leads to dramatic performance improvements. When simKd or simKt reaches its opti-
mal value, the performance begins to decline because the aggregation of too many representations may introduce redundant
and noisy information that can harm the predictive capacity. Furthermore, the nonzero choices of simKd and simKt demon-
strate the importance of utilizing the similarity-based representation inference method to infer new drugs or targets in our
method.

5.7. Visualization analysis

In this subsection, we designed an additional experiment to explore the representation power of the proposed model
from the view of the representations of drug-target pairs.

To simplify the discussion, we divided drug-target pairs into two clusters through predefined affinity thresholds provided
in previous studies [8,37], where the pKd value of 7 and the KIBA score of 12.1 were selected as thresholds for the Davis data-
set and the KIBA dataset, respectively. Drug-target pairs with affinities below the predefined threshold are classified as
weak-affinity pairs and those above as strong-affinity pairs. It should be noted that such division was conducted on the test
sets of the two benchmark datasets in scenario S1. We preserved the trained HGRL-DTA model and then extracted the rep-
resentations before the final prediction layer for drug-target pair samples in the test set.

This experimental analysis is based on an empirical assumption that drug-target pairs are expected to be as close as pos-
sible in the same cluster and as far as possible in different clusters in the pair representation space. The performance of clus-
tering of drug-target pair representations is positively associated with the representation power of the models. To evaluate
the clustering performance of the drug-target pair representations extracted from various models, we chose three classical
metrics, including silhouette coefficient (SC), Calinski-Harabasz index (CHI), and Davies-Bouldin index (DBI), with reference
to the previous study [2].

SC measures how close each sample in a cluster is to samples in the neighboring clusters, which ranges from �1 to 1. The
higher (the closer to 1) the SC metric is, the more separated the clusters are. The SC formula is given as:
SC ¼ 1
T

XT
i¼1

d̂i � �di

max �di; d̂i

� � ð14Þ
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Fig. 5. Parameter study of simKd and simKt for inferring new drug or target.
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where �di denotes the mean distance between the i-th sample and other samples in the same cluster and d̂i indicates the
mean distance between the i-th sample and all samples in the next nearest cluster.

CHI is the ratio of the sum of between-clusters dispersion and of within-cluster dispersion for all clusters, where the dis-
persion is defined as the sum of distances squared. A higher CHI score indicates better clustering performance. CHI is formu-
lated as:
CHI ¼ tr Bkð Þ
tr Wkð Þ �

T � k
k� 1

ð15Þ
where k denotes the number of clusters and tr Bkð Þ and tr Wkð Þ are the traces of the between group dispersion matrix and the
within-cluster dispersion matrix, respectively, defined by:
Wk ¼
Xk
p¼1

X
x2Cp

x� cp
� �

x� cp
� �T

;Bk ¼
Xk
p¼1

np cp � c
� �

cp � c
� �T ð16Þ
where Cp is the set of the vectors of samples in the p-th cluster, cp and c denote the centers of the p-th cluster and the test set,
respectively, and np indicates the number of samples in the p-th cluster.

DBI signifies the average similarity between each cluster Cp and its most similar cluster Cq. A lower DBI score indicates
better separation between the clusters. The DBI formula is defined as:
DBI ¼ 1
k

Xk
p¼1

max
p–q

�dp þ �dq

dp;q
ð17Þ
where �dp denotes the average distance between each sample of the p-th cluster and the centroid of that cluster and dp;q

denotes the distance between the centroids of the p-th and q-th clusters.
Table 3 reports the clustering performance of drug-target pair representations of our model and baselines on the two

benchmark datasets. As we can see, compared with baseline methods, our HGRL-DTA model achieves the best and
second-best cluster performance on the Davis and KIBA datasets, respectively. Moreover, to analyze the drug-target pair rep-
resentations more intuitively, we sampled weak-affinity pairs and strong-affinity pairs with a ratio of 1:1 from the test set of
the KIBA dataset and projected their representations into 2D space using t-distributed stochastic neighbor embedding (t-
SNE) [39] for visualization. As illustrated in Fig. 6, HGRL-DTA and MGraphDTA can well distinguish weak-affinity pairs
(red) and strong-affinity pairs (blue); DeepDTA, GraphDTA, and DGraphDTA recognize most of the strong-affinity pairs;
and AttentionDTA and BERT-GCN-V differentiate part of the drug-target pairs. These results indicate that HGRL-DTA allows
more delicate drug-target pair representations, which leads to better performance for binding affinity prediction.
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Table 3
Clustering performance of drug-target pair representations.

Architecture Davis KIBA

SC" CHI" DBI# SC" CHI" DBI#
DeepDTA 0.585 3122.789 0.730 0.305 4325.479 1.711
AttentionDTA 0.303 592.239 1.728 0.176 2200.669 2.470
GraphDTA 0.615 2751.677 0.917 0.313 5589.479 1.593
DGraphDTA 0.643 2506.929 0.906 0.353 4034.783 1.968

MGraphDTA 0.667 4119.269 0.640 0.501 17203.114 0.857

BERT-GCN-V 0.350 805.878 1.518 0.227 1926.217 2.681
HGRL-DTA 0.639 4330.756 0.587 0.410 10385.635 1.194

Note: The best score in each column is in bold and the second best score is underlined.

Fig. 6. Visualization of drug-target pair representations. Red: weak-affinity pair. Blue: strong-affinity pair.
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5.8. Computational complexity analysis

In this subsection, we discuss the time complexity of the proposed HGRL-DTA model and compare the running time of
different algorithms.

For the convenience of analysis, we define the number of drugs and targets by K , the maximum number of edges in the
molecular graph by E, and the maximum value of vector dimensions by D. The key parts of our model are the computations of
GCNs on the molecular graph and the affinity graph. Regarding the GCN on the molecular graph, the cores are the fine-level

graph representation learning and representation refinement components based on Eq. (1), which require O 3 KEDþ KD2
� �� �

flops in total. In addition, the computation by the coarse-level graph representation learning module in Eq. (3) requires

O 2 K2Dþ KD2
� �� �

. Overall, the upper bound of the computational complexity of our model is O K 2K þ 3Eþ 5Dð ÞDð Þ.
Table 4 shows the training time of different algorithms on the two benchmark datasets under scenario S1. We can observe

that the graph-based models generally consume more time to reach convergence during the training stage than the
sequence-based models. Among the graph-based models, we also find that the models modeling proteins as molecular
graphs (i.e., DGraphDTA, BERT-GCN-V, and HGRL-DTA), and the model consisting of superdeep GNN layers (i.e., MGraphDTA)
have a longer training time than GraphDTA. Moreover, compared with DGraphDTA, HGRL-DTA adds a GCN component
deployed on the affinity graph, but which does not result in a significant increase in training time. This is because the size
of the affinity graph is much smaller than that of molecular graphs, which makes the runtime of the model mainly dependent
on the computational time consumed by the GCN deployed on molecular graphs. In addition, after the first training of our
model reaches convergence, it can be directly used in subsequent applications without retraining. It is worth mentioning
that the running time is not our main focus in this study.
5.9. Case studies

To validate the effectiveness of our proposed HGRL-DTA model in realistic scenarios, we conducted a case study of drug
repurposing by predicting and ranking the binding affinity scores between commercially existing drugs and SARS-CoV-2 3C-
like protease (3CLPro). The 3C-like protease plays a crucial role in coronavirus replication and is a considerable therapeutic
target for diseases caused by coronaviruses, including COVID-19. Drug repurposing for the 3CLPro target facilitates the iden-
tification of inhibitors capable of suppressing virus spread and the development of new vaccines.

Following the previous study [16], we selected 82 antiviral drugs, 1 antiparasitic drug (Ivermectin), and 1 unrelated drug
(Aspirin) for our experiments and collected their SMILES strings from the PubChem database. We obtained the amino acid
sequence of 3CLPro from the Protein Data Bank (PDB) database. Then, the HGRL-DTA model pretrained on the KIBA dataset
takes the SMILES strings of these 84 existing drugs and the amino acid sequence of 3CLPro as input and returns a list of ranked
drug candidates according to the predicted affinity scores. Note that the case study was conducted under scenario S4, where
the chosen drugs and the 3CLPro target were unseen for HGRL-DTA in the training stage.
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Table 4
Training time of different algorithms.

Dataset DeepDTA AttentionDTA GraphDTA DGraphDTA MGraphDTA BERT-GCN-V HGRL-DTA

Davis 700s 9974s 1944s 26336s 60732s 25058s 26548s
KIBA 2300s 22676s 10942s 95836s 173982s 61084s 65814s

Table 5
Ranking results of repurposing drugs for SARS-CoV2 3C-like protease.

Rank Drug PubMed ID Rank Drug PubMed ID

1 Docosanol - 10 Doravirine -
2 Cobicistat 32671131 11 Vicriviroc -
3 Methisazone 32818545 12 Grazoprevir 33790352
4 Nevirapine - 13 Pleconaril -
5 Delavirdine - 14 Raltegravir 33790352
6 Ritonavir 32297571 15 Hydroxychloroquine 32373993
7 Glecaprevir 32441299 75 Aspirin 33417877
8 Adefovir - 83 Ivermectin 33662102
9 Chloroquine 32020029 - - -

Note: For several drugs in our predicted list, we provide the PubMed IDs of the publications that studied their effects on COVID-19. PubMed (https://
pubmed.ncbi.nlm.nih.gov/) is a free search engine accessing primarily biomedical literature.
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Table 5 reports the ranking results of the top 15 repurposing antiviral drugs and two counterexample drugs (i.e., Iver-
mectin and Aspirin). These results show that 8 recommendations out of the 15 have been confirmed to have inhibitory or
therapeutic effects against COVID-19 by many studies. In contrast, Aspirin and Ivermectin have weak affinities with the
3CLPro target, ranking 75 and 83 out of 87, respectively. This is consistent with the existing research results that the two
drugs do not have apparent associations with the treatment of COVID-19 [21,34]. The results of the case study demonstrate
the ability of HGRL-DTA to repurpose drugs in realistic scenarios.
6. Conclusion

In this paper, we propose a novel hierarchical graph representation learning model to learn the representations of drugs
and targets for better drug-target binding affinity prediction. Our model can synergistically capture the coarse- and fine-level
information from intermolecular interactions and intramolecular structures involving drugs/target molecules and integrate
such hierarchical graph information in a well-designed coarse-to-fine manner. To generalize our model to the cold start sit-
uation, we design a similarity-based representation inference method to deduce the coarse-level information for new drugs
or targets. Extensive experiments under four different scenarios have demonstrated that integrating coarse- and fine-level
information into the representations of drugs and targets can significantly improve the predictive capacity of the models.
We also find experimental evidence suggesting that the coarse-to-fine manner is beneficial for the integration of the hier-
archical graph information, and the similarity-based representation inference method is an effective strategy to infer
coarse-level representations for new drugs or targets. In the future, we will extend the proposed method to other biological
entity association prediction tasks with hierarchical graph architecture, e.g., drug-drug interaction (DDI) prediction and
protein-protein interaction (PPI) prediction.
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