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ABSTRACT: Artificial intelligence (AI) is booming. Among
various AI approaches, generative models have received much
attention in recent years. Inspired by these successes, researchers
are now applying generative model techniques to de novo drug
design, which has been considered as the “holy grail” of drug
discovery. In this Perspective, we first focus on describing models
such as recurrent neural network, autoencoder, generative
adversarial network, transformer, and hybrid models with
reinforcement learning. Next, we summarize the applications of
generative models to drug design, including generating various
compounds to expand the compound library and designing compounds with specific properties, and we also list a few publicly
available molecular design tools based on generative models which can be used directly to generate molecules. In addition, we also
introduce current benchmarks and metrics frequently used for generative models. Finally, we discuss the challenges and prospects of
using generative models to aid drug design.

■ INTRODUCTION

The development of a new drug is a complex process with high
cost, high risk, and a long cycle. It takes billions of dollars and
10−15 years for an innovative drug to be developed and finally
put on the market.1 The development of new drugs involves
multiple steps, such as discovery and optimization of lead
compounds and clinical research, among which the inefficient
discovery of early lead compounds is still an important issue that
needs to be resolved urgently.
There are currently some open accessible resources of

chemical compounds and their biological activities, such as
ChEMBL,2 PubChem,3 and ChemSpider.4 The number of
compounds of these databases is generally at the level of several
million. However, the chemical space of potential drug-like
compounds is much larger, with estimates ranging from 1023 to
1060.5 It is therefore extremely challenging how to explore such a
huge space more effectively and to find new molecules with
special properties.
In the early stage of rational drug design, molecules with novel

structures can be constructed by combining fragments of
existing compounds6 or using optimization algorithms such as
genetic algorithms.7−9 With the rapid development of computer
science and high-performance computing, artificial intelligence
(AI) approaches have been successful in fields such as image
processing, pattern recognition, and natural language process-
ing. In recent years, machine learning, especially deep learning,
has also been applied to drug discovery, such as predicting
compound properties and activities and their interaction with
protein targets. In the past few years, deep generative models

have attracted increasing attention, which try to learn the
probability distribution of the training data, extract representa-
tive features, produce a low-dimensional continuous represen-
tation, and eventually generate new data by sampling from the
learned data distribution. Different applications of generative
models have shown extraordinary results in the generation of
images,10 text,11 speech,12 and music.13 The development of
generative models has also brought new ideas for solving the
difficult problem of drug design and has been considered to be
one of the most promising approaches for drug design.14 When
applied to generate molecules, the essence of the generative
model is to learn the distribution of molecules in the training set,
so as to obtain molecules that are similar to but different from
the molecules in the training set. By combining evolutionary
algorithm or reinforcement learning, the specified properties of
generated molecules can be further optimized. The molecular
representation in generative models can be in any form,
including chemical fingerprints, simplified molecular input line
entry system (SMILES), molecular graph, three-dimensional
structures, etc.
In this Perspective, we focus on the application of generative

models in de novo drug design. First of all, we briefly introduce
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the frequently used generative models, such as recurrent neural
network, autoencoder, generative adversarial network, trans-
former, and hybrid models combining deep generative models
with reinforcement learning. Second, we comprehensively
review the latest development in the application of various
generative models in drug design and benchmarks and metrics
for evaluating their performances. Finally, we discuss the
prospect of the generative models for drug design.

■ PRINCIPLES OF A GENERATIVE MODEL

In this section, generative models are roughly divided into four
categories, including the models based on recurrent neural
network (RNN), autoencoder (AE), generative adversarial
network (GAN), and transformer and hybrid models combining
deep generative models with reinforcement learning (RL). The
basic principles and recent developments of these popular
generative models are described as follows.
RNN-Based Models. The RNN-based model has been used

in the field of natural language processing11,15 and now has also
been widely used in other different fields.16−18 The first study on
RNNs was the Hopfield model proposed by Hopfield.19

However, due to its difficulty in implementation, it has been
used less in practice. Generally, the simple recurrent network
models proposed by Jordan20 and Elman21 are considered to be
the basic version of the current RNN.
Figure 1A shows the basic network structure of the RNN,

where, through the loop connection on the hidden layer, the
current state of the network at the previous time can be received
at the current time and the network state at the current time can
be further transmitted to the next time. Namely, as an unrolled
RNN in Figure 1B, the hidden unit ht receives data from two
aspects at time t, the hidden unit value ht−1 at the previous time
of the network and the current input data xt, respectively, and
two outputs will be obtained through the calculation of the value
of the hidden unit, an output vector yt and an updated hidden
unit ht.

= −h f h x( , )t t t1 (1)

=y O h( )t t (2)

The parameters of the RNN can be estimated by minimizing the
cost function. Back propagation through the time algorithm can
be used to update the parameters in the network, but it often
results in the phenomena of “gradient explosion” and “gradient
disappearance” in the RNN model.22 Subsequently, these
problems have been mitigated by using microstructures such
as long short-term memory (LSTM) cells23 and gated recurrent
units (GRUs).24 Their internal structures are more complex and
help to store and update information selectively (Figure 1C).
Hochreiter et al. proposed an LSTM unit with controlled gates
for input, forget, and output.23 The elaborate “gate” structure
was used to remove or enhance the information to the cell state.
The LSTM cell uses a more controlled flow of information to
determine which information can be retained and which can be
discarded. LSTM implements a more refined internal processing
unit, which can maintain its internal state to extend the time of
sequential input in the RNN, thereby improving the perform-
ance of the RNN. Further studies revealed that GRU is a
simplified implementation of LSTM architecture and can
alleviate the problem of gradient disappearance and explosion
at a lower computational cost.24

When the RNN model is applied to de novo drug design, the
molecules can be represented in the form of sequences, such as
by using SMILES. Specifically, after training with a large number
of SMILES strings, the RNN model can be used to generate a
new valid SMILES that is not included in the original data set,
and thus can be considered as a molecular structure generative
model.
In addition, due to the needs of generating molecules that

meet required conditions, additional information on molecules
is incorporated into the RNN models by simply transforming
them into the initial state of the network. And the conditional
negative log-likelihood (CNLL) of the probability of sequence
generation is defined as

Figure 1. Structure of RNN: (A) the basic network structure of RNN; (B) an unrolled RNN structure; (C) internal structures of basic RNN, LSTM,
and GRU.
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where the condition vector is indicated as c. xt is the predicted
character, yt is the character in SMILES sequences, and N
represents the length of the sequence.
AE-Based Models. Autoencoder25 is composed of two

networks: the encoder maps the high-dimensional data to the
low-dimensional representation, and the decoder reconstructs
the original input as output given the low-dimensional
representation. The autoencoder is trained repeatedly to
minimize the deviation between the reconstructed output and
the original input, and the goal of the autoencoder is to find a
more compact representation of samples. The variational
autoencoder (VAE) and adversarial autoencoder (AAE) modify
the classical AE with some additional constraints to learn the
latent representation from the input data. Different from the aim
of AE, these models are designed to learn the probability
distribution of the data set, thereby generating samples that are
similar to but different from the data set. Figure 2 compares the
structures of VAE and AAE. In 2013, Kingma et al. proposed a
generative network structure based on variational Bayes
inference.26 Different from the autoencoder, the output of the
encoder and decoder in VAE is the probability distribution of
the data in the latent and initial space, respectively. In VAE, the
continuous representation z is interpreted as a latent variable
and p(z) is the prior distribution following a Gaussian
distribution. A probabilistic decoder is defined by a likelihood
function pθ(x|z) with parameters θ, and the encoder
approximates the posterior distribution with a model qφ(z|x)
paramerized by φ. The goal of the model is to maximize the
probability of each x in the training set by formula p(x) = ∫ pθ(x|
z) p(z) dz, but this integral is intractable to compute. Therefore,

qφ(z|x) is induced as an estimate of posterior distribution p(z|x),
and the goal is replaced bymaximizing the evidence lower bound
as follows,26 which is always less than or equal to log pθ(x):

θ φ = [ − | ]

≤
φ

θ

θL x E p x z q z x

p x

( , ; ) log ( , ) log ( )

log ( )

q z x( )

(4)

Here this formula can be also written as

θ φ = [ | ] − [ | ]θ φL x E p x z D q z x p z( , ; ) log ( ) ( ), ( )q z x( ) KL

(5)

According to the above formula, it should maximize the chance
of reconstruction pθ(x|z) and minimize the Kullback−Leibler
(KL) divergence27 between qφ(z|x) and the prior distribution
p(z) to maximize L(θ, φ; x).
The conditional variational autoencoder (ConditionalVAE)

applied in de novo drug design is derived from the semi-
supervised variational autoencoder (SSVAE) proposed by
Kingma et al.28 Specifically, there are two different scenes of
introduction conditions. When the molecular properties
considered as conditions can be directly calculated for all
molecules, these conditions can be incorporated into the inputs
of the encoder and the decoder (Figure 2B). The corresponding
objective function is given by eq 6

θ φ = [ | ]

− [ | | ]
θ

φ

L x c E p x z c

D q z x c p z c

( , ; , ) log ( , )

( , ), ( )

q z x c( , )

KL (6)

where c is a condition vector.
In the other scene, if the conditions cannot directly label all

molecules, like biological activity against specific targets, VAE
should combine with a predictor network to predict properties
for those unlabeled molecules, and the condition vector c is
considered as a latent variable from the predictor (Figure 2C).
The objective function for unlabeled molecules is shown as
follows:

Figure 2. Structure of VAE, AAE, and their corresponding conditional generation models. (A) The structure of VAE. (B) The structure of
ContidionalVAE with all labeled molecules. (C) The structure of ContidionalVAE combined with a predictor for unlabeled molecules. (D) The
structure of AAE. (E) Simplified version of ConditionalAAE with all labeled molecules.
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θ φ = [ | ] − [ | ]

− [ | ]
θ φ

φ

L x E p x z c D q c x p c

E D q z x c p z

( , ; ) log ( , ) ( ), ( )

( ( , ), ( ))

q c z x

q c x

( , ) KL

( ) KL (7)

In 2015, Alireza Makhzani et al. proposed adversarial
autoencoder (AAE).29 AAE (Figure 2D) is similar to VAE,
but its characteristic is to add a discriminant neural network in
the architecture, which is derived from the GAN model.30 AAE
uses adversarial training with a discriminator D, which can
distinguish the generator’s latent distribution from the prior to
avoid the use of KL divergence. The encoder of themodel can be
regarded as a generator G, and the output of G(x) fools the
discriminator D by mimicking the prior arbitrary distribution
p(z). Meanwhile, the discriminator D is trained to discriminate
between the latent distribution from the encoder and the prior
p(z). The model is optimized by the following formula:

[ ] + [ − ]

− [ | ]
θ

θ

∼ ∼

∼

E D G x E D z

E p x G x

min max log ( ( )) log(1 ( ))

log ( ( ))

G D
x p x z p z

x p x

,
( ) ( )

( )

data

data (8)

Conditional extension of AAE was also mentioned by Makhzani
et al.,29 including supervised AAE and semisupervised AAE. For
supervised AAE, the decoder reconstructs molecules from latent
vectors and condition vectors (Figure 2E). The condition of
unlabeled molecules should be generated in semisupervised
AAE, so an additional adversarial network is imposed to ensure
the posterior distribution of cmatches the predefined categorical
distribution.
GAN-Based Models. The concept of a generative

adversarial network was first proposed in 2014 by Goodfellow,
inspired by the game theory of two-person zero-sum game.30

The generative adversarial model includes a generator G and a
discriminator D (Figure 3A). Generally, the generator learns to

map the random noise to the specific distribution that needs to
be close to the data distribution, while the discriminator
determines whether the input is real data or the generated
sample from the generator which is usually a binary classifier.
Once the model is well-trained, new samples can be obtained
from the generator. Specifically, in the adversarial process, two

neural network models, generator G and discriminator D, are
trained at the same time, so thatD can find the hidden pattern in
the input data to accurately distinguish the real data from the
data generated by G, and G will iterate through optimizing the
weights for matrix multiplication of data sampling to learn to
deceive the well-trained D. Overall, the essence of the GAN
model is the zero-sum game where D and G compete with each
other. The following shows the objective function in the original
paper on GAN:

[ ] + [ − ]∼ ∼E D x E D G zmin max log ( ) log(1 ( ( )))
G D

x p x z p z( ) ( )data

(9)

In the above formula, pdata(x) is the real data distribution and
p(z) is a prior probability distribution. The discriminator D is
trained to maximize the probability of assigning the correct label
to both training examples and samples fromG, and the generator
G is simultaneously trained to minimize log(1 − D(G(z))).
Conditional generative adversarial network (Conditional-

GAN)31 is a variant of GAN, which is conditioned by adding
extra information c into both the generator and the discriminator
(Figure 3B). Condition vector c and input noise z are fed into
the generator, and in the discriminator, condition vectors c
concatenated with training samples are used as inputs. The
objective function is presented as eq 10, in which the
representations are the same as eq 9 except for the condition
vector c:

[ | ]

+ [ − | ]

∼

∼

E D x c

E D G z c

min max log ( )

log(1 ( ( )))
G D

x p x

z p z

( )

( )

data

(10)

Transformer Models. Transformer is a new model that was
proposed recently, showing state-of-the-art performance in
natural language processing.32,33 The original version of
transformer consists of encoder and decoder (Figure 4), and

the key of this model is the attention mechanism, which can
consider long-range dependencies in sequences. In detail, there
are three vectors including the key, query, and value vectors, and
the corresponding attention is represented as follows:

i

k
jjjjjj

y

{
zzzzzz=Q K V

QK
d

VAttention( , , ) softmax
T

k (11)

where dk is the dimension of key and query vectors and used to
scale the dot products of these vectors.

Figure 3. Structure of GAN (A) and ConditionalGAN (B).

Figure 4. Simplified structure of the transformer.
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Considering that the order of tokens in sequences is not
contained in the attention mechanism, additional position
information is injected into the inputs. Specifically, sine and
cosine functions are used in the form of the following formulas

i
k
jjjj

y
{
zzzz=PE sin

pos
10000i i d(pos,2 ) 2 / model (12)

i
k
jjjj

y
{
zzzz=+PE cos

pos
10000i i d(pos,2 1) 2 / model (13)

where pos represents the position, i represents the dimension,
and dmodel is the size of embedding.
Hybrid Models. Hybrid models combining deep generative

models with reinforcement learning34,35 have been applied to
generate de novo molecules biased to the desired proper-
ties.36−38 Reinforcement learning is a goal-oriented machine
learning method that uses environmental feedback as input and
adapts to the environment. Its main idea is to interact with the
environment with trial and error to find the optimal behavior
strategy which mimics the basic way for humans or animals to
learn.35 The core principle of reinforcement learning is to learn a
series of actions that will guide the agent to achieve its goal or
maximize its objective function. If a certain action of the agent
leads to a positive reward from the environment, that is, a
strengthening signal, then the trend of each subsequent action of
the agent will be strengthened. Otherwise, the agent’s tendency
to produce this action is weakened. This is consistent with the
principle of conditioned reflex in physiology.

■ APPLICATIONSOFGENERATIVEMODELS INDRUG
DESIGN

In this section, we review the latest developments in the
application of various generative models in de novo drug design,

which are mainly used to expand existing compound libraries for
virtual screening and generate compounds with specific
properties. These include not only in silico applications of
generative model algorithms to design and optimize molecules
but also real-world cases with experimental verification results.
Finally, we also summarize a few publicly available de novo
molecular design tools based on generativemodels for users with
less experience in coding or the knowledge of artificial
intelligence.

Generating Compounds and Expanding Compound
Libraries.With the development of generative models and their
application in the field of chemistry, our capability to explore
unknown chemical spaces can be enhanced. For example, Josep
Aruś-Pous et al. have shown that a RNN model trained with
0.1% of a database reproduced 68.9% of the entire database after
training.39 Moreover, a generative model can be trained to
determine a joint probability distribution p(x, y), i.e., the
probability of observing both amolecular representation (x) and
its physical property (y). It is thus possible to perform inverse
design p(x|y) to design new compounds with specific properties,
by conditioning the probability on a property (y).40 Simple
molecular representations such as SMILES and molecular
fingerprints have been frequently used as the input to the model.
Although they are concise and convenient, both of them have
their own limitations. Fingerprints are fixed-length representa-
tions that must be extremely large to encode all possible
substructures without overlap. For SMILES-based representa-
tions, the molecular structure is encoded according to certain
syntax rules. Generated SMILES that do not meet these rules
will be considered as invalid molecules, and additional checks
are needed to remove these invalid SMILES. Recently, many
efforts have been devoted to the molecular graph that directly
represents the molecule structures. Meanwhile, by using fine-
tuning, Bayesian optimization,41 transfer learning,16 and

Table 1. A List of Some Generative Models for Molecular Design

model data set code references

BIMODAL ChEMBL https://github.com/ETHmodlab/BIMODAL 43
REINVENT ChEMBL; ExCAPE-DB https://github.com/MarcusOlivecrona/REINVENT 36
ChemicalVAE QM9; ZINC https://github.com/aspuru-guzik-group/chemical_vae 41
GrammarVAE ZINC https://github.com/mkusner/grammarVAE 44
SD-VAE ZINC https://github.com/Hanjun-Dai/sdvae 45
ORGAN ZINC; GDB-17 http://github.com/gablg1/ORGAN 38
ORGANIC ZINC; GDB-17; Harvard Clean Energy

Project
https://github.com/aspuru-guzik-group/ORGANIC 42

LatentGAN ChEMBL; ExCAPE-DB https://github.com/Dierme/latent-gan 46
ARAE QM9; ZINC https://github.com/gicsaw/ARAE_SMILES 47
Onco-AAE NCI-60 cell line assay data https://github.com/spoilt333/onco-aae 48
LigGPT MOSES data set; GuacaMol data set https://github.com/devalab/liggpt 49
molecule_structure_
generation

BindingDB https://github.com/dariagrechishnikova/molecule_structure_
generation

50

MolRNN ChEMBL https://github.com/kevinid/molecule_generator 51
CGVAE QM9; ZINC; CEPDB https://github.com/Microsoft/constrained-graph-variational-

autoencoder
52

MolGAN QM9 https://github.com/nicola-decao/MolGAN 53
GCPN ZINC https://github.com/bowenliu16/rl_graph_generation 54
NeVAE QM9; ZINC https://github.com/Networks-Learning/nevae 55
GENTRL ZINC; ChEMBL; Integrity https://github.com/insilicomedicine/gentrl 56
JT-VAE ZINC https://github.com/wengong-jin/icml18-jtnn 57
DeLinker ZINC; CASF https://github.com/oxpig/DeLinker 58
DL4chem QM9; COD; CSD https://github.com/nyu-dl/dl4chem-geometry 59
GRAPHDG ISO17 data set https://github.com/gncs/graphdg 60
MOLGYM QM9 https://github.com/gncs/molgym 61
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reinforcement learning36,37,42 on the model, the new generated
molecules can be optimized, and the generative model can
produce molecules with desired properties. Table 1 shows
generative models for generating compounds and expanding the
compound library.
Using SMILES or Molecular Fingerprints as a Representa-

tion. Many deep generative model techniques have been
developed specifically for sequence generation. Therefore,
when generative models are applied to de novo drug design,
SMILES, which encodes amolecular graph compactly as a line of
text, has been first used as input to the generative model to
generate new molecules. SMILES was developed by Weininger
in the late 1980s,62 which is a formal grammar that explicitly
describes molecular structures using ASCII strings. For example,
O for oxygen, c and C for aromatic and aliphatic carbon atoms,
and −, =, and # for single, double, and triple bonds. An
important feature of SMILES is that it is easy to learn and
human-readable compared to most other methods of molecular
representation.
Most existing studies on the generative model for generating

newmolecules have used SMILES as amolecular representation,
including RNN, VAE, GAN, and so on. Bjerrum et al. applied an
RNN model through training on existing molecules from ZINC
compounds encoded as SMILES to generate virtual compound
libraries. The properties of the producedmolecules are similar to
those in training databases.18 Aruś-Pous et al. trained RNN
models with a subset of the enumerated database GDB-13 to
explore the GDB-13 chemical space. As a result, the trained
model reproduced 68.9% of the entire database by using only
0.1% molecule structures of the database.39

Segler et al. trained a long short-term memory RNN model
based on a large set of molecules from ChEMBL represented by
canonicalized SMILES called CharRNN to generate diverse and
chemically reasonable molecules. Furthermore, the model
produced specifically targeted molecules by performing transfer
learning on small sets of molecules with known actives.16 Moret
et al.63 comprehensively explored the effects of data
augmentation, temperature sampling, and transfer learning on
the application of generating molecules in low data regimes.
First, it is clear that the quality of the generated molecules will
not increase indefinitely with the increase of data and sampling
temperature, and the combination of these two has been
investigated. Meanwhile, the physicochemical properties of a
small set of molecules can be captured by transfer learning, and
the generative model fine-tuned by molecules with various
structures can generate a broad range of structurally diverse
molecules.63 In terms of application, several studies have applied
this transfer learning strategy to generate actives for specific
targets in practical drug design projects and identified novel
candidate compounds that show biological activity against
specific targets in vitro and in vivo. Yang et al.64 reported using
the LSTM-based neural network model16 to train 200,000
compounds from the ChEMBL database and then fine-tuned
the model with a data set containing 135 published p300
inhibitors and 576 macrocycle molecules to generate novel
p300/CBP inhibitors. As a result, the model generated a focused
library containing 672 chemical structures, from which some
compounds were selected for synthesis. After further systematic
optimization, a set of highly effective inhibitors was obtained.
Among them, a potential candidate B026 showed high
inhibitory activity against p300/CBP histone acetyltransferases
and significant tumor growth inhibition in animal models of
human cancer, which has been identified for further preclinical

development.64 Li et al.65 applied a RNN-based generative
model to discover potential inhibitors for Moloney murine
leukemia virus kinase 1 (Pim1) and cyclin-dependent kinase 4
(CDK4). They trained the model on the set of randomized
SMILES sequences of CDK4 inhibitors and Pim1 inhibitors, and
three molecules were selected based on synthetic accessibility.
These three molecules contain some difficult-to-attach frag-
ments and thus were further simplified prior to synthesis, leading
to MJ-4, MJ-115, and MJ-1055. These molecules verified the
inhibitory activity on Pim1 and CDK4. Among them, MJ-1055
had potent inhibitory activity on Pim1 with a IC50 value of 9.6
nM, and it was found to be different from similar molecules
protected in the relevant Markush patent. In contrast, MJ-4
showed weak inhibitory activity on CDK4, and MJ-115 also
showed significantly reduced activity as compared to known
inhibitors with similar structures. Overall, these results well
support the applicability and potential of the RNN-based
generative model in practical tasks and also suggested that
molecules generated by the RNN-based model alone may not
maintain the desired activity.65 Recently, Tan et al.66 combined
the RNN model with a multitask deep neural network to
automatically design and optimize antipsychotic drugs targeting
multiple G-protein coupled receptors (GPCRs). A multitask
neural network was first established to predict the activity of
compounds targeting the D2/5-HT1A/5-HT2A receptor. The
generated molecules with high predictive activity were used to
expand the fine-tuning set at each iteration during the transfer
learning process, which could avoid the newly generated
molecules being too similar to those in the training set. A hit
compound was obtained through the above process, and it was
latter synthesized and evaluated, showing potent activities
against D2, 5-HT1A, and 5-HT2A receptors in biochemical
experiments. Furthermore, 10 analogues of hit compounds were
designed by introducing different linkers or heterocyclic
moieties, and six analogues were selected by the above activity
prediction model and evaluated experimentally. Among them,
one compound exhibited not only promising activities on the
D2, 5-HT1A, and 5-HT2A receptors in vitro but also a potent
antipsychotic effect in animal models, showing good potential
for subsequent development.66 Schneider’s group also designed
novel and biologically active compounds from scratch by using
generative models.67,68 They developed a generic RNN model
that learned the constitution of drug-like molecules from a large
set of known bioactive compounds and used 25 fatty acid
mimetics known to have agonistic activity on retinoid X
receptors (RXRs) and/or peroxisome proliferator-activated
receptors (PPARs) to fine-tune the model. By employing the
target prediction method SPiDER,69 molecular shape, and
partial charge descriptors to rank the generated molecules, 49
high-scoring compounds were finally obtained. In the end, they
selected five compounds for synthesis and experimentally
verified their agonistic effects on nuclear receptors, and they
found that four of the compounds had nanomolar to low-
micromolar receptor modulatory activity in cell-based assays.67

In another work, they used a similar workflow to design natural-
product-inspired retinoid X receptor modulators by using
natural products that activate RXR to perform transfer learning.
In practice, they fine-tuned the generative model using six
natural products that activate RXR and obtained 201
compounds that are suitable for synthesis and predicted to be
RXR agonists by SPiDER.69 WHALES descriptors were used to
rank these molecules, and the top 50 compounds were further
selected for visual inspection. As a result, four generated
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compounds were selected for synthesis and in vitro experimental
verification and two compounds were confirmed to have
potential RXR agonistic activity.68

In addition to the conventional forward RNN model, the
bidirectional RNN model has also been explored as a new
method for SMILES string generation. The bidirectional RNN
model BIMODAL used SMILES with a randomly placed
starting token during training and showed improved “novelty”
value than the forward RNN model.43 Olivecrona et al.36

proposed the model called REINVENT which also used an
RNN for molecular de novo design, and they introduced a
reinforcement learning method to fine-tune the pre-trained
RNN, so the model could generate structures with desirable
properties, such as molecules that do not contain sulfur,
analogues of the drug Celecoxib, and active compounds of
dopamine receptor type 2 (DRD2). Specifically, they used this
model to produce DRD2 actives and found more than 95% of
the molecules produced by this model are predicted to be active,
including those that have been experimentally confirmed to be
active but not included in the generation model or activity
prediction model.36 Recently, Yoshimori et al.70 used the
generative model REINVENT with a pharmacophore model for
the design of discoidin domain receptor 1 (DDR1) inhibitors.
They sampled SMILES from the well-trained model and further
performed filtering of the generated molecules by pharmaco-
phore scores and binding affinity scores. Subsequently, nine
compounds were selected for synthesis, and two compounds
were modified during visual inspection. In the end, these
synthesized compounds were evaluated for their inhibitory
activity against DDR1 and three of themwere found to have sub-
micromolar inhibitory activity.70

For the VAE and AAE models, the new and valid SMILES
strings can be obtained by the decoder to achieve de novo
molecular generation. Gomez-Bombarelli et al.41 first applied a
VAE framework26 to chemical design called ChemicalVAE. In
the autoencoder model, they converted molecules represented
as SMILES strings into the latent space that captures
characteristic features of the training data. The autoencoder
can be trained jointly with a property prediction task to optimize
molecular properties; however, one of the major problems with
this model is that sometimes the produced molecules are invalid
or contain undesirable moieties, such as acid chlorides,
cyclobutadienes, and so on.41 In order to solve the above
problems, Kusner et al.44 induced context free grammar
(CFG)71 to give the VAE explicit knowledge about how to
produce valid molecules. They proposed grammar variational
autoencoder (GrammarVAE) which showed a higher percent-
age of valid molecules by generating syntactically valid SMILES
and also obtained a smoother latent space.44 However, there are
also non-context-free aspects of SMILES strings that went
unmodeled; for example, the syntax of SMILES requires that the
rings generated must be closed in molecule generation.
Therefore, syntax-direct variational autoencoder (SD-VAE)
introduced attribute grammar to enrich the CFG with “semantic
meaning”, and the percentage of valid SMILES generated by
training this model was further increased.45 Blaschke et al.72

constructed four different AE models including VAE with and
without the teacher forcing method, and AAE using a Gaussian
or a uniform distribution, and compared the capabilities of these
four models in generating compounds. As a result, the teacher-
forcing-based VAE model had a much higher fraction of valid
SMILES than VAEwithout teacher forcing, and AAE imposing a
uniform distribution showed the largest fraction of valid

SMILES and generated the smoothest latent chemical space
representation. Furthermore, they trained VAE with Bayesian
optimization to generate novel compounds with predicted
activity against dopamine receptor type 2.72

As a special generative model, GAN has also been applied to
molecular generation based on SMILES. One of the first
successful applications of GAN in molecule generation was the
objective-reinforced generative adversarial network
(ORGAN)38 and its improved version, objective-reinforced
generative adversarial network for inverse-design chemistry
(ORGANIC).42 Guimaraes et al.38 presented ORGAN, a GAN
framework with RL based on SeqGAN73 which can optimize the
properties of the generated molecules. To improve the stability
of the adversarial training, they also implemented a variant
ORGAN that utilized the Wasserstein distance74 and found the
generated molecules showed better diversity. Overall, these
models can generate molecules that learn the original data
distribution, show improvement in the desired metrics, and also
maintain diversity of the samples.38 ORGANIC42 is an
implementation of ORGAN in the direction of chemistry. As
described, the main shortcoming of ORGANIC is a large
number of invalid molecules and there might be many
repetitions in the valid molecules. This can be caused by the
roughness of the chemical space, and small changes in chemical
space can have dramatic effects on molecular structure.38 Putin
et al. came up with models combining GAN and RL called
reinforced adversarial neural computer (RANC)75 and
adversarial threshold neural computer (ATNC).76 These
models are deep neural network architectures based on the
ORGANIC paradigm but include differentiable neural com-
puter (DNC),77 a type of RNN with external memory, as a
generator. The DNC controller helps to balance the generator
and discriminator during adversarial training, so the models do
not suffer from the perfect discriminator problem. In addition,
ATNC uses the adversarial threshold (AT) block to act as a filter
between the agent and the environment, and it selects the
molecules that most match to the training data. As a result, these
models showed better performance when compared with the
ORGANIC model and can produce valid and unique SMILES
strings more stably. Prykhodko et al.78 combined autoencoder
with generative adversarial neural network to produce
LatentGAN for de novo molecular design. In this model,
SMILES of molecules were not used in GAN directly but first
transformed into latent vectors through a heterencoder
strategy.46 This process alleviated the complexity caused by
molecules with similar structures that may have different
canonical SMILES and reduce the overfitting problem caused
by multiple representations of the same molecule.78 In addition
to the combination of AE and GAN, the combination of VAE
and GAN was newly proposed, as these two methods are
complementary to each other. A model combining these two
schemes has two merits. First, it can avoid the insufficiently
flexible approximation of posterior distribution in VAE, which
may cause unnatural molecules or even invalid outputs. Second,
it can avoid the difficulty in handling discrete variables in GAN,
which may cause a low-diversity problem and a repeated
generation of molecules. Hong et al.47 proposed to use the
framework of adversarially regularized autoencoder (ARAE),79

which takes advantage of GAN- and VAE-based models, to
generate valid and unique molecules.47 Specifically, this model is
based on VAE, but the distribution of latent variables in this
model is not approximated by predefined functions but obtained
through an adversarial training process like GAN. Meanwhile, in
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order to avoid the difficulty of discrete data processing,
continuous latent variables are used in adversarial training
instead of discrete molecular structures.
Transformer33 is an advanced model architecture for solving

some problems of RNN-based models, which has been used for
de novo drug design. LigGPT49 is a mini version of the
generative pre-training transformer (GPT) model80 for
molecular generation, which can learn long-range dependencies
in SMILES, like ring closures. The masked self-attention
mechanism was applied in the model because, when predicting
the next token in a sequence, only the attention in front of this
token should be utilized. Mandhana et al. also constructed the
model Transformer-XL81 based on SMILES to generate
molecules, and this model successfully considered variable-
length molecular sequences. Grechishnikova50 proposed a de
novo drug generative model based on the Transformer
architecture33 which considered molecular generation as a
translational task from protein sequences and SMILES of
molecules. The goal of this model is to generate a lead
compound for a specific protein with only sequence
information.50

In addition to using SMILES to represent molecule structure
as input of the generation model, other molecular representa-
tions have also been tried. Gomez-Bombarelli et al.41 tested
InChI82 as a representation of molecule input into the VAE
model to generate a new molecule and found that its
performance is worse than SMILES, possibly due to the syntax
involved in counting and the arithmetic being more complex.41

Some examples have tried molecular fingerprints as molecular
representations, but the limitation of generating fingerprints as
output is that they cannot be directly converted into real
molecular structures. One alternative approach is to use the
generated fingerprints to select compounds from the compound
library based on molecular fingerprints similarity, but this
approach can only be used for screening rather than designing
from scratch. Kadurin et al.48 first proposed the application of
AAE to generate novel compounds for cancer treatment.
Specifically, they converted the SMILES string provided by
PubChem into 166-bit molecular access system (MACCS)
chemical fingerprints,83 used a vector of binary fingerprints and
inhibition concentration of the molecule as the model input and
output, and trained the model with NCI-60 cell line assay data of
6252 compounds profiled on the MCF-7 cell line. This model
was trained to encode and reconstruct not only molecular
fingerprints but also experimental concentration. Finally, the
output was applied to screen 72 million compounds on
PubChem to find candidate molecules with anticancer proper-
ties. As a result, 69 compounds belonging to various chemical
classes were selected, and it was found that some of them had
already been used as anticancer agents for the treatment of
various cancer types.48 Recently, they proposed an adapted AAE
model called drug generative adversarial network (druGAN),
which could be trained with much larger molecule data sets.
Compared with the VAE model, this model showed better
capacity and efficiency in generating newmolecules with specific
anticancer properties.84 Bian et al.85 came up with a deep
convolutional generative adversarial network (dcGAN) model
to screen and design new compounds for cannabinoid (CB)
receptors. In this model, the convolutional neural network
(CNN) model was used as a discriminator, while the reverse
convolution process was used as a generator. In order to
determine the appropriate architecture and input data structure
of CNN involved, they explored various combinations of

network architectures and molecular fingerprints. Finally, the
discriminator was established based on the LeNet-5 architec-
ture, and AtomPair fingerprints were selected as the input of the
dcGAN model to represent small molecules.85

Using a Molecular Graph as a Representation. Although
most of the previous molecular generation models use SMILES
to represent molecules, SMILES has its own limitations. For
example, the literal meaning of the SMILES string is different
from the molecular structure it represents, so it may not be
appropriate to directly apply existing natural language
processing models. Moreover, producing valid SMILES strings
requires the model to learn semantic rules that are not relevant
to the molecular structure, such as SMILES syntax and atomic
ordering, which adds an unnecessary burden to the training
process and needs additional checks to remove invalid SMILES
after sampling. With the development of graph neural network
(GNN), it is a feasible choice to directly use a graph to represent
molecules and to operate in the graph space to generate
molecules. Chemical checks can be performed, such as valency
checks on the molecular graph directly; at the same time, the
partially generated molecular graphs can be interpreted as
substructures, which helps usmake full use of all of the generated
molecules. However, the design of the deep generation models
for graphs is not easy to implement, as we need to deal with the
problems of discrete structure, permutation invariant, and
variable size.
Simonovsky and Komodakis86 trained GraphVAE formulated

in the framework of VAE26 to generate molecular graphs. This
model was defined to generate probabilistic fully connected
graphs of a predefined maximum size and aligned the generated
graphs to the ground truth by using a standard graph matching
algorithm. One potential limitation of this model is it can be only
applied to generating small graphs.86 Li et al.87 introduced a
graph generation model similar to Johnson’s work,88 which used
a sequential process for the graphs, generated one node at a time,
and created edges one by one to connect each node to the
existing partial graph. In this way, the graph was converted into a
structure to build the sequence of actions. The author modeled
this sequential decision process by using a graph network. This
graph model was trained to generate molecules with less than 20
heavy atoms based on the ChEMBL data set, which generally
outperformed the LSTM model on the same graph generating
sequences.87 Later, Li et al.51 proposed sequence graph
generators MolMP and MolRNN. The graph generation of
the former architecture model was taken as a Markov process,
and the latter model MolRNN depended both on the current
state of the graph and the history. In these models, the training
set covers larger compounds containing 50 heavy atoms in the
ChEMBL data set.51 Liu et al.52 put forward a sequential
generative model based on VAE architecture called CGVAE.
They introduced gated-graph neural networks89 in the encoder
and decoder of the model and employed valency masks to
enforce chemical rules for generating molecules to ensure that
new generated molecules are always valid. Unlike Li’s work87

mentioned above, this model is conditioned on the current
partial graph rather than on a full history of the generation
sequence to avoid overfitting problems.52 Cao and Kipf53

adapted GAN to construct the model called MolGAN which
operated directly on graph-structured data. It is an implicit,
likelihood-free generative model that uses graph convolution
and a node aggregation operator to obtain a permutation-
invariant discriminator. This model can produce a high
proportion of valid and novel compounds while having a low
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score in uniqueness due to the mode collapse, which is the main
failure of GAN architecture.53 You et al.54 generated molecule
graphs based on the graph convolutional policy network
(GCPN) model. This model combined graph representation,
reinforcement learning, and adversarial training in a unified
framework, enabling the generation of valid molecular graphs.
Furthermore, this method could directly optimize the properties
of the molecular graph to generate goal-directed molecules. The
results showed that, when compared with advanced methods
such as JT-VAE57 and ORGAN,38 GCPN was superior in
molecular property optimization and property targeting.54

Samanta et al.90 proposed a variational autoencoder for graphs
where the encoder and decoder were specially designed. The
probabilistic encoder learned to aggregate information from a
different number of hops away from a given node and then
mapped this aggregate information into a continuous latent
space, which could encode graphs with a variable number of
atoms. Moreover, the decoder jointly represented all edges as an
unnormalized log probability vector, which was then fed a single
edge distribution, and this allowed for an efficient inference
algorithm and decoding. The result showed that the trained
autoencoder can find a smooth latent representation of
molecules and generate new molecules with higher “validity”
and “novelty”.90 Later, Samanta et al.55 further improved this
model and proposed NeVAE. In the decoder of this model, the
spatial coordinates of the atoms of the generated molecules can
be provided. Furthermore, a gradient-based algorithm was
developed to optimize the decoder so that it learns to generate
molecules that maximize the value of certain properties.
Experiments have shown that, compared with other graph-
based models, this model could find reasonable, diverse, and
novel molecules more effectively. Besides, this model can also
help to discover molecules with low potential energy values by
optimizing the spatial configuration of molecules.55

Generative tensorial reinforcement learning (GENTRL) is a
deep generative model for de novo small molecule design
proposed by Zhavoronkov et al.56 The model specifically
combined the algorithms of reinforcement learning, variational
inference,91 and tensor decomposition,92 and three different
self-organizing maps93 were used as reward functions. Recently,
GENTRL was successfully used to find potent inhibitors of
DDR1, a kinase target associated with fibrosis and other
diseases. Six lead candidates were identified from the new
generated compounds, one of which showed good efficacy and
pharmacokinetic properties in mice. In this work, effective
inhibitors of DDR1 were discovered in 21 days using GENTRL,
and the design, synthesis, and experimental testing were
completed in a total of 46 days, demonstrating the potential of
this method for rapid and effective molecular design.56

Different from generating molecular graphs atom by atom,
using valid chemical substructures as nodes in the graph is
considered a promising method. JT-VAE generates molecular
graphs in two phases: first, it generates a tree-structured scaffold
which contains subgraph components extracted from the
training set, and then, the subgraphs are combined into a
molecule by a graph message passing network. In this way, the
“validity” of generated molecules can be further improved.57

Imrie et al.58 developed a graph generation model called
DeLinker. Thismodel took two fragments or partial structures as
input and simultaneously combined their three-dimensional
structure information, including the distance between the
fragments and their relative directions, to generate a molecule
containing these two substructures. The results showed that this

method can be applied to fragment linking, scaffold hopping,
and proteolysis targeting chimera design.58

In addition to generating new molecular graphs, there are
studies generating three-dimensional molecular structures,
which are important in designing molecules with high biological
activity. Mansimov et al.59 proposed a conditional deep
generative graph neural network DL4Chem that generates
corresponding molecular conformations from molecular graphs
by learning the energy function. In the model, conditional
variational autoencoder26 was used for the construction stage of
the energy function, graphs were modeled using a messaging
neural network, and three-dimensional coordinate vectors of all
atoms were used to represent molecular conformations.94

Compared with the traditional force field methods, the
conformations generated by this model were closer to the
ground-truth conformation on average with much reduced
calculation cost. This method could provide the initial
coordinates for the conventional force-field-based methods.59

Different from the above method, graph distance geometry
(GRAPHDG) proposed by Simm et al.60 used pairwise
Euclidean distances between atoms to describe molecule
conformation, including edges between the bonded atoms and
auxiliary edges between second and third neighbors, which is
invariable to rotation and translation.60 In the framework of
conditional variational autoencoder,26 this generative model can
obtain the corresponding set of atomic distances according to
molecular graph. By combining an Euclidean distance geometry
(EDG) algorithm,95 the molecular conformation can be
obtained. As a result, compared with the classical EDG
method96 in RDKit and the above machine learning method
DL4Chem,59 GRAPHDG showed state-of-the-art performance
in the new benchmark they established. Recently, Li et al.97 built
a new generative model architecture named L-net, which can
directly generate drug-like molecules with topological and 3D
structures. The model was trained using drug-like molecules
from the ChEMBL data set, with their 3D coordinates calculated
by RDKit. As a result, themodel can generate chemically correct,
conformationally valid, and drug-like molecules. Furthermore,
they combined L-Net with a reinforcement learning method
Monte Carlo tree search (MCTS) to optimize molecules
targeting tyrosine-protein kinase ABL1. Specifically, they used
the functional group that exerts inhibition activity on the known
active molecule asciminib as the seed structure and optimized
the rest of the structure to obtain higher binding affinity. The
result showed that this model can generate molecules with high
predicted binding affinity, and the generated molecules had
similar interaction modes and predicted binding affinity as
compared to known inhibitors.97 Simm et al. proposed a novel
RL formulation by using quantummechanics to guide molecular
design,61 where the reward function is based on the electronic
energy and is approximated by the semiempirical Parametrized
Method 698 in SPARROW.99,100 Considering that the properties
of molecules are invariant under translation and rotation, the
internal coordinates of atoms with respect to existing atoms, like
the distance, angle, and dihedral angle, are learned by the agent
first, and then, these internal coordinates are mapped to
Cartesian coordinates. These procedures allow us to calculate
quantum-mechanical properties directly. In the molecular
generation process, the agent tries to take atoms from a given
bag and place them on a 3D canvas.61 This sequential generation
of atoms in Cartesian coordinates to obtain molecules expands
the class of molecules that can be generated and allows the
generation of systems consisting of multiple molecules.
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Currently, this model is limited to designing molecules with
known molecular formulas and further exploration is needed to
increase its scalability.
Conditional Molecular Design. Most molecular design

tasks require generating compounds that meet specific require-
ments. In addition to optimizing the generated new molecules
by using methods like fine-tuning, transfer learning, and
reinforcement learning, many efforts have been made to modify
the previous generative model, to establish conditional
generative models. These kind of models directly incorporate
the information onmolecular properties coupled with molecular
structure information, which can guide molecular generation to
specific areas of the chemical space associated specific
conditions. Therefore, conditional molecular design samples
new molecules from a conditional generative distribution
without any additional optimization process. Besides, the
conditional models can be easily adapted to consider multiple
target properties simultaneously. Some generative models for
conditional molecular design are summarized in Table 2.

Lim et al.101 presented a molecular generative model based on
conditional variational autoencoder,28 which could impose
certain conditions on latent space. Specifically, the model may
generate desired drug-like molecules by controlling five
properties, i.e., molecular weight (MW), LogP, number of
hydrogen bond donors (HBDs), number of hydrogen bond
acceptors (HBAs), and total polar surface area (TPSA),
simultaneously. During training, these target properties were
formed as a predefined condition vector and concatenated with a
latent vector. It was possible to adjust LogP without changing
others and generate molecules with a certain property beyond
the range of the training set. However, this model showed a low
success rate of generating a desirable molecule, which was
possibly caused by strong correlation among the properties.101

Kang and Cho102 built a model to conditionally generate
molecules using the regression version of semisupervised
variational autoencoder (SSVAE).28,102 Instead of defining a
condition vector in advance, they used a property prediction
model to generate continuous-valued properties as given target
condition; thus, SSVAE efficiently generates new molecules that
satisfy the target condition without any additional optimization
process. This model can take full advantage of a small portion of
labeled molecules to improve the performance, which may
reduce the cost of labeling molecules.102 Polykovskiy et al.104

improved supervised adversarial autoencoders proposed by

Makhzani et al.29 with several disentanglement approaches,
called entangled conditional adversarial autoencoder (ECAAE).
In this work, they applied the AAE model to generate an
inhibitor of Janus kinase 3 (JAK3) and found a promising hit
compound which showed good in vitro activity and
selectivity.104 Meńdez-Lucio et al.105 reported a generative
model which links systems biology to molecular design. Their
model was based on the conditional generative adversarial
networks,31 in which specific gene expression signatures were
used as conditions. In this way, molecules with similar activity
can be designed for the desired target without annotating the
target of the compound.105 Hong et al.47 proposed conditional
generation model CARAE based on ARAE,79 in which they
adopted a variational mutual information minimization frame-
work to generate molecules with specific target properties. The
original molecular properties were predicted by a predictor
network, and the molecular properties can be separated from the
latent vectors by minimizing the variational mutual information.
In the decoding phase, the molecular structure is reconstructed
according to the latent vector and separated target property
information.47 Kotsias et al.103 constructed a conditional
recursive neural network (cRNN) to generate molecules
meeting the required conditions. In the RNN-based molecule
generation process, the different molecular descriptors are
entered into the model as conditions. Specifically, the authors
built two cRNN models: the PhysChem-based model used
LogP, TPSA, MW, HBA, HBD, and quantitative estimation of
drug-likeness (QED) concatenated with soft labels predicted by
the QSAR model as conditions, while the FingerPrint-based
model used Morgan fingerprints as conditions. In this method,
conditional seed can direct the focus of the RNN to a specific
subset of the chemical domain, such as biologically active
compounds related to a specific protein target.103 The
transformer-decoder model LigGPT49 also can be trained
conditionally to generate molecules with specific properties or
desired scaffolds. Specifically, the property conditions and
scaffold conditions are transformed into condition vectors and
concatenated with the embeddings obtained from SMILES
tokens. Therefore, the token predicted by a well-trained model
can learn from both the previous tokens and the conditions. Due
to the urgency of the COVID-19 pandemic, Chenthamarakshan
et al.106 proposed a generative model called controlled
generation of molecules (CogMol) to design molecules
targeting novel viral proteins with a set of desired attributes,
by introducing a multiattribute controlled sampling scheme into
the VAEmodel. They used CogMol to generate novel molecules
for three SARS-CoV-2 target proteins, the main protease, the
receptor-binding domain of the spike protein, and nonstructural
protein 9 replicase, with constraints of target affinity and
selectivity, drug-likeness, synthesis feasibility, and toxicity. The
result showed that generated molecules were able to bind
favorably to the relevant druggable pockets of the target
structures and showed low predicted metabolite toxicity and
high synthetic feasibility.106

The conditional generative models have also been applied to
the generation of molecular graphs. Li et al.51 proposed a
conditional generative model based on MolRNN to generate
graph molecules, which is suitable for multiobjective de novo
drug design. In this study, they applied this model to generate
compounds containing a given scaffold, based on synthetic
accessibility and drug-likeness, as well as dual inhibitory
activities against both JNK3 and GSK-3β.51

Table 2. A List of Some Generative Models for Conditional
Molecular Design

model data set code references

CVAE ZINC https://github.com/
jaechanglim/CVAE

101

SSVAE ZINC https://github.com/nyu-dl/
conditional-molecular-
design-ssvae

102

CARAE ZINC https://github.com/gicsaw/
ARAE_SMILES

47

cRNN ChEMBL;
ExCAPE-DB

https://github.com/pcko1/
Deep-Drug-Coder

103

LigGPT MOSES data set;
GuacaMol data
set

https://github.com/
devalab/liggpt

49

conditional
MolRNN

ChEMBL https://github.com/
kevinid/molecule_
generator

51
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DeNovoMolecular Design Tools Based on Generative
Models. Many web-based applications and software that
integrate generative models have been established, which are
friendly to users that have less experience in coding or the
knowledge of artificial intelligence. Table 3 summarizes a few
publicly available tools.
MolAICal is a free and effective software developed by Bai et

al., which can be used to design 3D ligands in the protein pocket.
It contains sequence-based generative models and graph-based
generative models, and both of them are trained by the
Wasserstein generative adversarial network (WGAN).107

MORLD is a free web server that can be used to automatically
optimize lead compounds, and it can also generate small
molecules from scratch targeting specific proteins when feeding
the structure of protein without lead compound information.108

LiGANN is a web-based application, and users only need to
input the target protein PDB file for ligand generation. Different
from the conventional generative models that learn from drug-
like or target-specific data sets to generate new molecules,
LiGANN is based on a new approach for structure-based drug
design, where the neural network model was trained to map
protein structures to ligand shape and then decode the shape to
ligand in the form of SMILES.109

■ BENCHMARKS AND METRICS FOR A GENERATIVE
MODEL

There are two main benchmarks for de novo molecular design,
molecular sets (MOSES)110 and GuacaMol,111 which cover
frequently used generative models and various metrics to
evaluate the performance of generative models.
MOSES110 is primarily concerned with the problem of

evaluating the distribution of generated molecules. It contains
five neural-network-based baseline models, namely,
CharRNN,16 VAE,26 AAE,29 JT-VAE,57 and LatentGAN,78

and three non-neural baselines, namely, the n-gram generative
model, the hidden Markov model, and the combinatorial
generator. Its data set is derived from ZINC.112 In MOSES,
“validity”, “uniqueness”, and “novelty” are the three most widely
used metrics to evaluate the quality of molecules generated by
various models. “Validity” describes the percentage of SMILES
that can be recognized by RDKit in generated molecules,
“uniqueness” represents the proportion of non-redundant
molecules in valid molecules, and “novelty” is the fraction of
generated molecules that are not in the training set. Other
metrics used in MOSES are shown in Table 4.
GuacaMol111 provides seven baseline models for generating

molecules, including SMILES genetic algorithms,113 graph
genetic algorithms,8 graph MCTS,8 SMILES LSTM,16 VAE,41

AAE,104 and ORGAN,38 and the postprocessed ChEMBL114

data set for training. The performances of these models are
compared in two different aspects: one is that the model
generates new molecules following the same chemical
distribution of the training set, and the other is that generated
molecules can meet specific properties. Correspondingly,

metrics for these two aspects are also considered. For the
distribution-learning benchmarks, three general metrics, “val-
idity”, “uniqueness”, and “novelty”, are assessed, and “FCD”115

is also used in GuacaMol (Table 4). In addition, “KL
divergence”27 is used to compare the probability distributions
of the physicochemical descriptors of the training molecules and
the generated molecules (Table 4). For the goal-directed
benchmarks, there are several different categories of optimiza-
tion goals, such as rediscovering the target molecule, generating
molecules similar to the target molecule, generating isomers
corresponding to the target molecular formula, and so on.111

GraphINVENT119 is a new benchmark for molecular graph
generation, which integrates six different advanced GNN into a
unified graph generation model framework, including message
neural network, gated-graph neural network (GGNN),89

set2vec (S2V),120 GGNN with attention,121 S2V with
attention,121 and edge memory network.122 The metrics in
this benchmark follow the MOSES, and the comparison results
showed that GGNN performed best among all six GNN-based
models.119

In addition to the metrics that have been introduced into the
above benchmarks, Zhang et al. proposed that, when training the
generative model with a small subset of GDB-13, the fraction of
structures, ring systems, and functional groups of sampled
molecules appearing in GDB-13 could be used to measure the
chemical space coverage of generated molecules.123

■ CONCLUSION AND PROSPECT
De novo drug design is a process with a long cycle and high
investment. With the fast progress of artificial intelligence, more

Table 3. De Novo Molecular Design Tools Based on Deep Generative Models

model URL developer references

MolAICal https://molaical.github.io/ Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University 107
MORLD http://morld.kaist.ac.kr Department of Bio and Brain Engineering, Korea Advanced Institute of Science and

Technology
108

LiGANN https://www.playmolecule.org/
LiGANN/

Computational Science Laboratory, Universitat Pompeu Fabra 109

Table 4. A List of Performance Metrics for Molecular
Generative Models

metrics description

validity The proportion of SMILES that can be recognized by RDKit
in generated molecules.

uniqueness The proportion of non-redundant molecules in valid
molecules.

novelty The proportion of generated molecules that are not in the
training set.

filters The proportion of valid molecules that can pass the custom
medicinal chemistry filters and PAINS116 filters.

fragment
similarity

Compare the frequencies of BRICS fragments117 in the
generated set and the test set.

scaffold
similarity

Compare the frequencies of Bemis−Murcko scaffolds118 in
the generated set and the test set.

similarity to a
nearest
neighbor

The average similarity between the generated molecule and
the nearest neighbor molecule in the test set.

internal
diversity

The similarity within the generated molecules.

Frećhet
ChemNet
distance
(FCD)115

Frećhet distance between the distribution of the training set
and the generated molecules.

KL divergence Compare the probability distributions of the
physicochemical descriptors from the molecules in the
training set and the generated molecules.
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and more related approaches have been proposed.124,125

Generative models have attracted our attention and developed
rapidly, and different architectures that have been successful in
other fields such as image or text generation have been proposed
to generate new lead compounds with expected biological and
chemical properties. In this Perspective, we mainly summarize
recently reported generative modeling techniques and demon-
strate their applications in the field of de novo drug design.
Although there have been a lot of studies on generative

models for generating molecules, the application of generative
models in drug design is still in its infancy, and there are many
challenges to be addressed for further development.
For the purpose of extending the existing compound library,

there have been many virtual libraries containing valid and novel
chemical structures, including the generic database
(GDB)126−128 by the Reymond laboratory, ZINClick,129

REAL,130 DrugspaceX,131 and so on. These libraries are either
generated by predefined rule-based transformations or from
mathematical graphs irrespective of pre-existing building blocks.
Different generation approaches may have different advantages,
such as synthetically more accessible or structurally more
diversified. There have been some examples of successful
discovery of new active ligands from these compound libraries
through virtual screening.132−134 For the deep generative model,
an apparent advantage is it can be trained to learn a joint
probability distribution of molecular representation and
associated property, which allows us to more effectively sample
new molecules that meet certain properties. There have been
some reported works that try to explore the chemical space to
obtain molecules that meet certain physicochemical properties
of molecules,101−103 and this is an emerging direction that needs
to be further explored. Recently, Polykovskiy et al. used the
model ECAAE to generate selective inhibitors of JAK3 by
specifying high activity against JAK3 and low activity against
JAK2 as a condition, and a hit with IC50 activity of 6.73 μM
against JAK3 but inactivity against JAK2 was obtained.104

In terms of molecular representation in the generative model,
many efforts have been devoted to study molecular topological
graphs, but their performances often lack comparability due to
different data sets and metrics used. GraphINVENT119 is a
benchmark test specially designed for comparing molecular
graph generative models, while it does not include many new
models. We expect that, with the improvement of benchmarking
methods, the comparison among different generative models
will become more standardized and more objective. Further-
more, we also see that attempts are being made to add
information about the three-dimensional chemical structures,
aiming to describe the structure of themoleculemore accurately,
thus making the molecules generated by the models more
reliable for further research.
The currently widely used performance metrics for generative

models also need to be improved. For example, Renz et al. have
shown that “validity” can be easily maximized by inserting a
carbon atom into SMILES strings in the training set.135

According to the definition of “novelty”, a molecule is novel if
its SMILES is different from those in the training set, and this
calculated “novelty” is different from the understanding of
chemists, and many reported generative models have shown
fairly high numerical values of “novelty”.110 The frequently used
“druggability” and “synthesizability”metrics also have their own
problems.110 Therefore, although different evaluation and
comparison metrics for generating models have been provided,
the role and importance of these metrics for different studies are

still unclear. How to evaluate the quality of a model and the
generated molecules remains an unsolved issue, which requires a
concerted effort to better refine baseline evaluationmethods and
to evaluate the ability of published generative models.
Another apparent shortcoming of the existing research is the

lack of experimental verification. Although there have been
many reports of using generative models to generate new
compounds, there are less examples that generated compounds
have been synthesized and experimentally evaluated. Zhavor-
onkov et al.56 used the molecule GENTRL to discover effective
inhibitors of DDR1 within 21 days. They designed, synthesized,
and experimentally verified the molecule targeting DDR1 kinase
in less than 2 months and finally obtained a drug candidate with
good pharmacokinetic properties in experimental animals. This
successful case illustrates the feasibility of the generative model
for rapid drug design, but we also need to be cautious because
the generated molecules are still in the early stage of drug
development and may require further evaluation of their efficacy
and safety in humans. Moreover, the similarity between themost
active compound reported in this work and the known kinase
inhibitor Ponatinib raises the question of whether similar active
molecules can be generated using conventional molecular
optimization strategies, such as fragment substitution, bio-
isosterism, rearrangement of heterocyclic ring systems, and so
on.136 This study also reminds us that the novelty of the
generated molecules needs to be critically evaluated when
applying the generative model to drug design.
Overall, we are just beginning to use generative models to

design molecules, there are many aspects of such models that
need to be further improved, and more computational and
experimental validations and benchmarking tests are needed.
Nevertheless, we believe that it will become an important pillar
in the field of de novo drug design in the near future, assisting
medicinal chemists to generate new ideas and accelerate the
cycle of drug discovery.

■ AUTHOR INFORMATION
Corresponding Authors

Hualiang Jiang − Drug Discovery and Design Center, State Key
Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203,
China; University of Chinese Academy of Sciences, Beijing
100049, China; Phone: +86-21-50806600-1303;
Email: hljiang@simm.ac.cn

Nan Qiao − Laboratory of Health Intelligence, Huawei
Technologies Co., Ltd, Shenzhen 518100, China; Phone: +86-
15810851722; Email: qiaonan3@huawei.com

Mingyue Zheng−Drug Discovery and Design Center, State Key
Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203,
China; University of Chinese Academy of Sciences, Beijing
100049, China; orcid.org/0000-0002-3323-3092;
Phone: +86-21-50806600-1308; Email: myzheng@
simm.ac.cn

Authors
Xiaochu Tong − Drug Discovery and Design Center, State Key
Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203,
China; University of Chinese Academy of Sciences, Beijing
100049, China

Xiaohong Liu − Drug Discovery and Design Center, State Key
Laboratory of Drug Research, Shanghai Institute of Materia

Journal of Medicinal Chemistry pubs.acs.org/jmc Perspective

https://doi.org/10.1021/acs.jmedchem.1c00927
J. Med. Chem. 2021, 64, 14011−14027

14022

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hualiang+Jiang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:hljiang@simm.ac.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nan+Qiao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:qiaonan3@huawei.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mingyue+Zheng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3323-3092
mailto:myzheng@simm.ac.cn
mailto:myzheng@simm.ac.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaochu+Tong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaohong+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/jmc?ref=pdf
https://doi.org/10.1021/acs.jmedchem.1c00927?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Medica, Chinese Academy of Sciences, Shanghai 201203,
China; University of Chinese Academy of Sciences, Beijing
100049, China

Xiaoqin Tan − Drug Discovery and Design Center, State Key
Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203,
China; University of Chinese Academy of Sciences, Beijing
100049, China

Xutong Li − Drug Discovery and Design Center, State Key
Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203,
China; University of Chinese Academy of Sciences, Beijing
100049, China

Jiaxin Jiang − Drug Discovery and Design Center, State Key
Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203,
China

Zhaoping Xiong − Laboratory of Health Intelligence, Huawei
Technologies Co., Ltd, Shenzhen 518100, China

Tingyang Xu − Tencent AI Lab, Shenzhen 518057, China

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jmedchem.1c00927

Author Contributions
H.J., N.Q., and M.Z. directed the project. X.T. wrote the
manuscript with the assistance of X.L., X.T., X.L., J.J., Z.X., and
T.X. All authors approved the final version of the manuscript.

Notes
The authors declare no competing financial interest.

Biographies

Xiaochu Tong is currently a postgraduate student in the Shanghai
Institute of Materia Medica (SIMM), Chinese Academy of Sciences.
Her research interests are focused on the application of generative
models in drug design.

Xiaohong Liu is currently a Ph.D. student at SIMM, Chinese Academy
of Sciences. His recent research is on artificial intelligence (AI)-based
molecular filtering models for existing compound libraries or AI-
designed molecules.

Xiaoqin Tan is currently a Ph.D. student at SIMM, Chinese Academy
of Sciences. Her research is about molecular design and optimization
based on generative models.

Xutong Li is currently a Ph.D. student at SIMM, Chinese Academy of
Sciences. Her research interests are mainly focused on kinome-wide
polypharmacology profiling of small molecules based on a multitask
deep neural network.

Jiaxin Jiangwas awarded amaster’s degree by University of Science and
Technology of China. He is currently a staff member at the State Key
Laboratory of Drug Research at SIMM.His main research interest is the
development of artificial intelligence drug design methods, including
but not limited to lead compound discovery and molecular generation
based on machine learning methods.

Zhaoping Xiong graduated from ShanghaiTech University as a Ph.D.
in 2021 and joined the Healthcare and Health Intelligence department
of HUAWEI Cloud. His research interests are molecular representation
learning, explainable AIs, and federated learning for drug discovery.

Tingyang Xu is a senior researcher at Machine Learning Center in
Tencent AI Lab. His main research interests include social network
analysis, graph neural networks, and graph generations, with particular
focus on the deep graph learning models for molecular generation.

Hualiang Jiang was awarded a Ph.D. by SIMM, Chinese Academy of
Sciences, in 1995. Dr Jiang mainly focuses on research about
computational chemistry/biology and drug design. He has been
engaged in the establishment of an innovative drug research platform by
integrating target discovery and drug design methods and technologies.

NanQiao received his Ph.D. degree fromChinese Academy of Sciences
in Bioinformatics and focuses on research about bioinformatics,
genomics, clinical research, drug discovery, big data, machine learning,
and artificial intelligence. He made significant contributions to cancer
drug development during his stay at Novartis and won the Novartis
Team Award and Novartis Select Award. In 2015, Nan joined
Accenture China as the lead data scientist and set up Accenture
China AI Lab, which focuses on building AI capabilities, AI assets, and
AI industry solutions. In 2019, Nan joined HUAWEI Cloud as Chief
Scientist in Healthcare and the head of Health Intelligence, leading AI
products/services development for health industry.

Mingyue Zheng received his Ph.D. degree from SIMMunder Professor
Hualiang Jiang in 2006. He is currently a Professor in State Key
Laboratory of Drug Research at SIMM. His main research interests are
in artificial intelligence approaches for rational drug design and
discovery, cheminformatics, and computational biology. He has been
engaged in the machine-learning-based methodology development
around the discovery and structural optimization of lead compounds,
the assessment of drug ADME/T properties, as well as the application
of the above methods in practical drug design and discovery processes.

■ ACKNOWLEDGMENTS
This work was supported by the National Natural Science
Foundation of China (81773634), Shanghai Municipal Science
and Technology Major Project, National Science & Technology
Major Project “Key New Drug Creation and Manufacturing
Program” of China (Number: 2018ZX09711002-001-003), the
Strategic Priority Research Program of the Chinese Academy of
Sciences (XDA12020372), and Tencent AI Lab Rhino-Bird
Focused Research Program (No. JR202002).

■ ABBREVIATIONS USED
AAE, adversarial autoencoder; AE, autoencoder; AI, artificial
intelligence; ARDs, antibiotic resistance determinants; ARAE,
adversarially regularized autoencoder; AT, adversarial thresh-
old; ATNC, adversarial threshold neural computer; CB,
cannabinoid; CDK4, cyclin-dependent kinase 4; CFG, con-
text-free grammar; CNLL, conditional negative log-likelihood;
CNN, convolutional neural network; CogMol, controlled
generation of molecules; ConditionalGAN, conditional gen-
erative adversarial network; ConditionalVAE, conditional varia-
tional autoencoder; cRNN, conditional recursive neural net-
work; dcGAN, deep convolutional generative adversarial
network; DDR1, discoidin domain receptor 1; DNC, differ-
entiable neural computer; DRD2, dopamine receptor type 2;
druGAN, drug generative adversarial network; ECAAE,
entangled conditional adversarial autoencoder; EDG, Euclidean
distance geometry; FCD, Frećhet ChemNet distance; GAN,
generative adversarial network; GCPN, graph convolutional
policy network; GDB, generic database; GENTRL, generative
tensorial reinforcement learning; GGNN, gated-graph neural
network; GNNs, graph neural networks; GPCRs, G-protein
coupled receptors; GPT, pre-training transformer; GRAPHDG,
graph distance geometry; GRUs, gated recurrent units;
GrammarVAE, grammar variational autoencoder; HBAs, hydro-
gen bond acceptors; HBDs, hydrogen bond donors; JAK3, Janus
kinase 3; KL, Kullback−Leibler; LSTM, long short-term
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memory; MACCS, molecular access system; MCTS, Monte
Carlo tree search; MOSES, molecular sets; MW, molecular
weight; ORGAN, objective-reinforced generative adversarial
network; ORGANIC, objective-reinforced generative adversa-
rial network for inverse-design chemistry; Pim1, Moloney
murine leukemia virus kinase 1; PPAR, peroxisome prolifer-
ator-activated receptor; QED, quantitative estimation of drug-
likeness; RANC, reinforced adversarial neural computer; RL,
reinforcement learning; RNN, recurrent neural network; RXR,
retinoid X receptors; S2V, set2vec; SA, synthetic accessibility;
SD-VAE, syntax-direct variational autoencoder; SMILES,
simplified molecular input line entry system; SSVAE, semi-
supervised variational autoencoder; TPSA, total polar surface
area; VAE, variational autoencoder; WGAN, Wasserstein
generative adversarial network
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