====
论文
====

======
Python
=====
=

=========
Tensorflow
=========

=======
PyTorch
=======

=====
Keras
=====

====
专题
====

====
链接
====

====
视频

====

=======
药物设计

=======

=======
材料科学
=======

============
经济学与金融学
==========
==


========
联邦学习
=======
=

联邦学习综述  

FederatedAI/FATE:
An Industrial Grade Federated Learning Framework

 

tensorflow/federated:
A framework for implementing federated learning

 
lokinko/Federated-Learning:
联邦学习
 
   
   
   
   
   
   

 

 


联邦学习

联邦机器学习(Federated machine learning/Federated Learning),又名联邦学习,联合学习,联盟学习。联邦机器学习是一个机器学习框架,能有效帮助多个机构在满足用户隐私保护、数据安全和政府法规的要求下,进行数据使用和机器学习建模。联邦学习作为分布式的机器学习范式,可以有效解决数据孤岛问题,让参与方在不共享数据的基础上联合建模,能从技术上打破数据孤岛,实现AI协作。谷歌在2016年提出了针对手机终端的联邦学习,微众银行AI团队则从金融行业实践出发,关注跨机构跨组织的大数据合作场景,首次提出“联邦迁移学习”的解决方案,将迁移学习和联邦学习结合起来。

上海市浦东新区沪城环路999号