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ABSTRACT: Molecular mechanics Poisson−Boltzmann surface area (MM/PBSA)
and molecular mechanics generalized Born surface area (MM/GBSA) are arguably very
popular methods for binding free energy prediction since they are more accurate than
most scoring functions of molecular docking and less computationally demanding than
alchemical free energy methods. MM/PBSA and MM/GBSA have been widely used in
biomolecular studies such as protein folding, protein−ligand binding, protein−protein
interaction, etc. In this review, methods to adjust the polar solvation energy and to
improve the performance of MM/PBSA and MM/GBSA calculations are reviewed and
discussed. The latest applications of MM/GBSA and MM/PBSA in drug design are also
presented. This review intends to provide readers with guidance for practically applying MM/PBSA and MM/GBSA in drug
design and related research fields.
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1. INTRODUCTION

In thermodynamics, free energy refers to the amount of
internal energy of the system that can be used to do work, and
it determines the direction of the thermodynamic process as
well as the probability that the system will remain in a given
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state. Since the free energy drives all molecular processes, such
as protein folding, molecular association, chemical reaction,
etc., accurate determination of the free energy is one of the
most important tasks in biomolecular studies. At present,
molecular dynamics (MD) simulation is the most important
tool used to obtain free energies of molecular systems.1 MD
simulation not only helps one to understand the physical
processes of the system at the atomic level but also enables one
to uncover the hidden states of the system that cannot be
detected experimentally.2−6 Since experimental measurements
of the thermodynamic properties of biomolecular systems are
often expensive and time-consuming, accurate theoretical
calculations of their free energies by numerical simulation are
becoming more and more important in many research fields,
such as rational drug design, protein folding, protein−protein
interactions (PPIs), etc.1

In a real molecular system, such as the binding of a drug to
its receptor in a cell, the thermodynamic process is carried out
under isothermal−isobaric (NPT) conditions, and the free
energy of the system is given by7

F k T ZlnB= − (1)

where kB is Boltzmann’s constant, T is the temperature of the
system, and Z is the partition function of the system. Here the
system is assumed to be in thermodynamic equilibrium, so the
partition function Z can be expressed as7−9
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where V0 is a constant that has units of volume, N is the
number of particles in the system, h is Planck’s constant, and P
and V are the pressure and volume of the system, respectively.
The factor N! in eq 2 appears only for indistinguishable
particles. The integration is performed over all phase space
(3N positions r and conjugate momenta p). The Hamiltonian
H(p, r) is the system’s total energy for a given configuration
with known momenta and coordinates.
The absolute free energy in eq 1 can be directly computed

for a limited number of cases only,1,10,11 for which the systems
are usually small, governed by simple Hamiltonians, and
analytical expressions for the partition functions exist. For
larger systems with complex interactions between particles, it is
often impossible to obtain analytical formulas for the partition
functions, and thus, their absolute free energies cannot be
directly computed using eqs 1 and 2. In most cases, it is often
more practical to compute the difference between the free
energies of the targeted state and a reference one. Of course, in
special cases, if the free energy of the reference state is known,
the absolute free energy of the system could still be obtained.
For example, an analytical formula for the partition function
can be acquired by neglecting the interactions between
particles (such as ideal gases) or as a result of the symmetry
between the particles (such as ideal crystals). However, most
biological events occur in liquid solution, and it is more
difficult to define an appropriate reference state for a liquid-
phase system than those ideal systems. Therefore, in areas such
as drug design,12−15 protein−protein/ligand interactions,16,17

solubility of small molecules,18,19 protein−ligand binding
affinities,20−24 protein folding,25,26 and conformational changes
of biological macromolecules,27 it is more convenient and
realistic to calculate the free energy difference for an event or

the relative free energy of two states. In general, combining the
statistical mechanical expressions for F to estimate ΔFBA, the
free energy difference between two (or possibly a series of)
states A and B, gives28

F F F k T k T
p

p
ln

Z
Z

lnBA B A B
B

A
B

B

A

Δ = − = − = −
(3)

where pA and pB are the probabilities that the system is state A
or B, respectively.
In drug design, the binding free energy is often used to

characterize the binding strength between a receptor and a
drug molecule. The fundamental goal of structure-based drug
design is to find new lead compounds that bind as tightly as
possible to macromolecular receptors. Compared with the
experimental methods, computational methods can signifi-
cantly reduce the time and cost of designing new drug
molecules. Various theoretical methods have been successfully
utilized in drug design/discovery.28,29 The proper choice of
these methods largely depends on the stage at which the design
will be needed, and there is usually a trade-off between the
accuracy and efficiency.24

The most widely used computational method in structure-
based drug design is molecular docking.30−32 The main
application of this technique in drug design is to predict the
binding poses of candidate compounds in a defined binding
pocket and discriminate binders from nonbinders. Although
molecular docking is computationally efficient and low-cost, its
predictions of binding poses and, particularly, binding free
energies as measured by docking scores are usually not of high
accuracy,33−36 and it has difficulty in reliably distinguishing
compounds with comparable binding affinities.
Alchemical free energy (AFE) methods,15,37−39 which are

also called pathway methods, require the interconversion of the
system from the initial state to the final state via infinitesimal
alchemical changes of the energy function, and they are
theoretically rigorous and accurate. Free energy perturbation
(FEP)40−43 and thermodynamic integration (TI)44−47 are two
techniques that are widely utilized in alchemical free energy
computations. However, one critical issue of the alchemical
methods is the slow convergence of the free energy differences
and high computational cost.37 The convergence is particularly
difficult in systems involving slow structural transitions or large
environmental reorganizations. Hence, these methods are
based on Monte Carlo (MC) or MD simulations and require
sufficient sampling of complexes, ligands, and intermediate
states in solution, resulting in huge computational cost in
practical applications. Moreover, the setup of systems for TI
and FEP calculations is complicated and requires experience.
Recently, software for performing TI and FEP calculations
using graphics processing units (GPUs) has begun to
emerge.48,49 Even though the computational efficiency is
greatly improved in comparison to the CPU versions, TI/
FEP with GPU is still not suitable for large-scale virtual
screenings and is mostly used in the stage of lead optimization
in a drug design campaign.
The above two sets of methods do not perform well in terms

of the balance between accuracy and efficiency. On the other
hand, end-point free energy methods50−55 have been
extensively utilized in structure-based drug design. As the
name indicates, end-point methods are based on samplings of
the final states of a system, and therefore, they are much less
expensive than the pathway methods and more accurate than
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most docking scoring functions. The most well known end-
point free energy methods are molecular mechanics Poisson−
Boltzmann surface area (MM/PBSA) and molecular mechan-
ics generalized Born surface area (MM/GBSA), developed by
Kollman et al.,56−58 which achieve a good balance between
computational efficiency and accuracy and thus are the focus of
this review. Since the PB solution56,58,59 is computationally
time-consuming, a set of more efficient approximation
methods based on the GB model59−62 have been developed
and have attracted more and more attention.63−67 Another
popular method with intermediate performance is linear
interaction energy (LIE)55,68−70, whose computational effi-
ciency is second only to that of the scoring function, but we
will not discuss it in this review. MM/PBSA and MM/GBSA
have been widely used to evaluate docking poses, determine
structural stability, and predict binding affinities and hotspots.
In addition, MM/PBSA and MM/GBSA allow analysis of the
contributions from individual residues or energy terms by free
energy decomposition analysis,63,71,72 which gives detailed
residue-specific energetic contributions to the system binding,
identifies dominant interactions in the binding process, and
thereby facilitates individualized drug design.
Earlier reviews24,73−76 mainly focused on how to apply MM/

PBSA and MM/GBSA to calculate binding free energies and
how to improve the methods from both the efficiency and
accuracy perspectives. Unfortunately, there is not much
consensus on these techniques so far, mainly because the
computational performance of the methods depends on the
system being studied. In this review, we first briefly describe
the methodologies of the MM/PBSA and MM/GBSA
approaches and then discuss how to improve their perform-
ance, with a special emphasis on calculation of the polar
solvation energy. Finally, we discuss the latest applications of
the MM/GBSA and MM/PBSA methods in the fields of small-
molecule drug design and macromolecule interactions. We
hope that the current review will provide readers with helpful
guidance in comprehensive understanding of the method-
ologies as well as practical applications of the MM/GBSA and
MM/PBSA approaches.

2. METHODOLOGY

In the MM/PBSA or MM/GBSA approach, the free energy for
binding of the ligand (L) to the protein receptor (R) to form
the complex (RL),

G G G Gbind RL R LΔ = − − (4)

can be decomposed into contributions of different interactions
and expressed as58

G H T S E G T Sbind MM solΔ = Δ − Δ = Δ + Δ − Δ (5)

in which

E E E EMM int ele vdWΔ = Δ + Δ + Δ (6)

G G Gsol PB/GB SAΔ = Δ + Δ (7)

G bSASASA γΔ = · + (8)

where ΔEMM, ΔGsol, and −TΔS are the changes in the gas-
phase molecular mechanics (MM) energy, solvation free
energy, and conformational entropy upon ligand binding,
respectively. ΔEMM includes the changes in the internal
energies ΔEint (bond, angle, and dihedral energies), electro-
static energies ΔEele, and the van der Waals energies ΔEvdW.
ΔGsol is the sum of the electrostatic solvation energy ΔGPB/GB
(polar contribution) and the nonpolar contribution ΔGSA
between the solute and the continuum solvent. The polar
contribution is calculated using either the PB or GB model,
while the nonpolar energy is usually estimated using the
solvent-accessible surface area (SASA).77,78 However, the GB
method gives an analytical expression for the polar solvation
energy and is thus much faster than the PB method. The
change in conformational entropy −TΔS is usually calculated
by normal-mode analysis58 on a set of conformational
snapshots taken from MD simulations. However, because of
the heavy computational cost, changes in the conformational
entropy are usually neglected when only the relative binding
free energies of similar ligands are needed.
The typical steps of using MM/PB(GB)SA combined with

MD simulations to calculate the binding free energy include
the following: (1) An MD simulation of the protein−ligand
complex is performed using an explicit solvent model, as the
implicit solvent simulations have been shown to produce less
accurate results.79 (2) All of the solvent molecules and charged
ions are deleted from each MD snapshot, and the implicit
PBSA or GBSA solvent model is used to evaluate the solvation
energy. (3) Optionally, the solute conformational entropy
change can be computed from a chosen set of snapshots. The
final binding free energy is then acquired by a simple
summation of these individual energy components. Figure 1
shows the flowchart of the three steps with two computational

Figure 1. Typical flowchart for calculating binding free energy using the three-average and one-average MM/PB(GB)SA protocols (called 3A-
MM/PB(GB)SA and 1A-MM/PB(GB)SA, respectively, by Genheden and Ryde51).
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protocols (the separate trajectory protocol on the left and the
single trajectory protocol on the right). It is noted that the
reason for applying an implicit solvation model to calculate the
free energy of a system is to avoid the large fluctuation of
potential energies when explicit water molecules are used in
the calculation.80 However, the above computational protocol
of applying both the explicit and implicit solvation models in
the first two steps is arguably inconsistent, as the MD
simulation and energy calculation share the inconsistent energy
functions, thus requiring reweighting of some energy terms.
Although one could in principle avoid this inconsistency by
also performing the MD simulation with an implicit solvent
model, the result of such an approach is generally less reliable,
and the simulation may even lead to dissociation of a ligand
from its receptor or a protein subunit from the others.79 Ryde
et al. claimed that explicit solvent model for MD simulation is
essential and that simulations with implicit water molecules
often yield poor results.79 Since water plays an important role
in protein−ligand interactions (e.g., water molecules can form
hydrogen bonds between the protein and the ligand), MD
simulation in an explicit water solvent system is essential for
reliable prediction of the binding free energies of protein−
ligand systems.
As shown in Figure 1, there are mainly two protocols to

generate the conformations in the first step above: (1)
performing independent MD simulations for the isolated
ligand, apo protein, and bound protein−ligand complex and
(2) performing an MD simulation for the bound protein−
ligand complex and using a single MD trajectory of the bound
complex to obtain the structures of all three components (i.e.,
the ligand, apo protein and protein−ligand complex).81 In
practice, the second protocol is more popular and preferable,
and it gives more accurate results with lower standard errors.24

However, the second approach is based on the assumption that
the structures sampled for the protein−ligand complex in
solution are sufficiently similar to those sampled for the apo
protein and the isolated ligand. This assumption is valid in
most cases of protein−ligand binding but could be invalid in
some cases, e.g., when the protein−ligand binding is associated
with large conformational changes.50 A main attractive
advantage of the second approach is that the internal energy
errors of the systems can be canceled because the energy
difference between the protein−ligand complex and its
individual components (apo protein and ligand) are computed
using exactly identical configurations. However, for the first
protocol, the energy difference taken between the averages
produced from separate bound and unbound trajectories may
result in additional errors or noise due to large internal energy
errors at different conformations or structures, and these errors
are difficult to eliminate simply by running longer MD
simulations. In general, it is a challenge to correctly determine
whether the simulation has reached convergence.82 In the
second protocol, however, the fluctuations of the energy terms
are much smaller because of the cancellation of internal energy
errors, but this protocol may suffer from inadequate sampling
of the apo receptor and/or the ligand.
The energy terms in eq 5 are averaged over multiple

configurations or several MD snapshots (typically a few dozen
or hundred structures for ΔEMM and ΔGsol) to improve the
predictive accuracy of the binding free energies. Depending on
the extent of configurational fluctuations of the system,
convergence to the stable states possibly requires relatively
longer (multinanosecond) MD simulations. Genheden and

Ryde investigated the convergence issue83 and found that it is
better to average the results predicted from several
independent MD trajectories, and that opinion is also
supported by other works.84−86 For avidin, with a 200 ps
production time for each MD run, 5−50 independent MD
simulations are needed to reach a statistical accuracy of ∼1 kJ/
mol for the seven biotin analogues.83 Several published works
reported that the results of the MM/PB(GB)SA approaches
are dependent on the length of the MD simulations.87,88

Johnson et al. found that with different PB radii, the results of
their calculations using the MM/PBSA method based on
0.25−2.00 ns MD trajectories were satisfactory (Pearson
correlation coefficient r2 > 0.70),87 but their calculations based
on MD trajectories longer than 2 ns gave less accurate results.
In a previous work,88 we explored the effect of the length of
MD simulations (ranging from 400 to 4800 ps) on binding free
energy predictions. The results showed that the length of the
MD simulations significantly impacts the accuracy of the
predicted binding free energies and that in order to obtain
better predictions, longer MD simulations are not necessarily
beneficial, with simulation lengths less than 5 ns considered to
be reasonable. Virtanen et al., however, concluded that the
length of the MD simulations is not of critical importance to
the accuracy of the calculations.89 It seems that the impact of
the MD simulation length on free energy calculations is
system-dependent.
A problem with MM/PB(GB)SA is the occurrence of

several substates that are seldom sampled during the
simulations. In such a case, a binding free energy with a larger
standard error may be obtained beyond expectation,90

indicating that even longer (maybe >10 ns) or several
independent simulations should be performed to yield
improved results from a better-equilibrated simulation.83

Recently, Tsuda et al. proposed a useful machine learning
approach (called Best Arm Identify) to optimally regulate the
minimum number of MD trajectories for protein−ligand
systems.91 Interestingly, an important improvement in MM/
PBSA predictions was also obtained by filtering MD snapshots
through prescoring of the protein−ligand complexes with a
machine-learning-based approach (SVMSP).92

Although many studies emphasized the importance of MD
sampling,93 the minimized conformations could frequently
yield predictions as good as or even better than those from MD
simulations in practice.94−97 That is to say, MD sampling does
not seem to be essential in binding free energy prediction in
some cases. Binding free energy can be calculated by MM/
PB(GB)SA on the basis of a single minimized structure rather
than abundant MD snapshots. Undoubtedly, that approach
costs much less computational time, whereas at the same time
it ignores the dynamical effects, resulting in predictions that are
extremely dependent on the initial structures and losing all of
the information about the statistical accuracy24 of the
approach. It seems that the standard deviation in the statistics
cannot be utilized to estimate the precision of the predicted
binding free energy and various energy terms from multiple
MD snapshots. Ryde et al. tested this approach by minimizing
selected MD snapshots and showed that the results based on
single minimized configurations are similar to those based on
MD trajectories but that sometimes unrealistic structures need
to be eliminated in order to avoid unpredictable and incorrect
binding affinities.79
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3. ASSESSING THE PERFORMANCE OF MM/PBSA
AND MM/GBSA

In a series of published works, we have systematically evaluated
the prediction capability of the MM/PBSA and MM/GBSA
methods.88,93,94,97−101 The results suggest that the prediction
of binding free energy strongly depends on the force field,79,97

charge model,97 continuum solvation method,102 interior
dielectric constant,94 sampling method,79 and conformational
entropy.99 In Table 1, we summarize some benchmark reports
assessing the performance of the MMPBSA and MMGBSA
methods since 2011. The general conclusions include the
following: (1) 1 ns MD simulation in explicit solvent with the
AMBER ff03 force field is critical for the MM/GBSA
calculation; (2) a relatively higher solute dielectric constant
(εin = 2 or 4) is preferable to improve the rescoring accuracy of
MM/PB(GB)SA; (3) MM/PBSA is more sensitive to the
investigated systems than MM/GBSA; (4) the Hawkins−
Cramer−Truhlar GB model (GBHCT) gives the best agreement
with the experimental values of binding affinities, and the
mbondi radii set is not recommended for the Onufriev−
Bashford−Case GB model (GBOBC).
The force field plays a central role in molecular simulations

since it determines all of the interactions of a system.108 Ryde
et al. studied the effects of the force field on the predicted
ligand binding affinities calculated by MM/PBSA using three
different versions of the nonpolarizable AMBER force field
(AMBER ff94, ff99, and ff03) and obtained similar results.79

Better force fields such as polarizable force fields are desirable
for use in MM/PBSA, as the current implicit solvent models
were developed for nonpolarizable force fields. In our previous
work, 46 small molecules targeting five different protein targets
were used to test the effects of five AMBER force fields and
four different charge models.97 We reached the following
conclusions: (1) for short MD simulations (<1 ns), the
AMBER ff03 force field yields the optimal prediction by both
MM/GBSA and MM/PBSA; (2) for medium-length MD
simulations (2−4 ns), MM/GBSA with ff99 and MM/PBSA
with ff99SB give the optimal predicted results. It should be
noted that these conclusions are restricted to the set of force
fields used in that study (AMBER ff99, ff99SB, ff99SB-ILDN,
ff03, and ff12SB). These results indicate that the force field
used in MD simulations and MM/PB(GB)SA calculations
should be consistent and that mixing of different force fields
may cause inaccurate predictions.
Gohlke and Case studied in detail how the results of binding

free energy prediction depend on the polar solvation energy.66

The results suggested that the PB predictions were largely
impacted by the radii used, as the multiple variants of GB radii
gave very different results. Among the four radii sets studied
(bondi, mbondi, mbondi2, and PARSE), the results obtained
using PARSE showed the lowest correlation with the
experimental data (r2 = 0.62−0.77), and unexpectedly, the
difference between the predictions based on mbondi and
mbondi2 was very small.87 Recently, Ryde et al. proposed a
method called MM/3D-RISM and compared the predictions
of the new method with those of four GB and two PB
methods.102 Their results indicated that the accuracy of the
MM/3D-RISM approach (Pearson correlation coefficient rP =
0.90) was comparable to that of the best MM/PBSA method
(rP = 0.93), but the mean absolute deviation (MAD) was
significantly worse (37 kJ/mol compared with 16 kJ/mol).
Comparison of the MM/3D-RISM and MM/PBSA ap-

proaches was also made by Pandey et al., and in general,
MM/PBSA performed better than MM/3D-RISM in the
predictions of the relative binding free energies for three
protein systems.109 We evaluated the accuracy of the MM/
GBSA predictions of three GB models,88 and the results
showed that the GB model developed by Onufriev, Bashford,
and Case110 is the best one for ranking the binding affinities of
the inhibitors. In most cases, the MM/PBSA calculation with
Tan’s PB parameters shows better ranking performance than
MM/GBSA (GBOBC1). Restrained electrostatic potential
(RESP) charges yield the optimal capability for MM/PBSA
and MM/GBSA, while the predictions based on the AM1-BCC
and ESP charges are also fairly satisfactory.
Johnson et al. found that the use of multiple short MD

trajectories did not decrease the MM/PB(GB)SA performance
compared with a single long MD simulation trajectory,87

indicating that multiple independent dynamic samplings can
offset the errors due to the force field. Therefore, the use of
multiple independent samplings is recommended, which tends
to average out the difference between different GB methods.
In addition, we also assessed the performance of MM/GBSA

and MM/PBSA in reproducing the absolute binding free
energies for a large data set.88,99 The results showed that MM/
GBSA gives worse predictions than MM/PBSA in calculating
the absolute binding free energies. However, MM/GBSA
produces better performance in ranking the binding affinities
for systems without metals. Thus, MM/GBSA, with its much
better computational efficiency, can be a powerful tool in drug
design, where researchers frequently pay attention to the
rational ranking of inhibitors.
Although MM/GBSA and MM/PBSA are reliable and

efficient methods to estimate binding free energies, their
weaknesses should also be noticed. In particular, one major
source of errors is the conformational entropy. This is often
computed by normal-mode analysis (NMA),111−113 which
dominates the computational cost of the MM/PB(GB)SA
methods. Thus, for structurally similar molecules whose
contributions to the conformational entropy are similar, this
entropic term is usually ignored, and only the relative binding
free energies of those molecules are calculated. Moreover, to
decrease the computational cost, Genheden et al.104 and Duan
et al.114 developed high-performance entropy calculation
algorithms named truncated entropy and interaction entropy,
respectively, to estimate the entropy changes for receptor−
ligand interactions in MM/PB(GB)SA calculations, and these
methods showed improved accuracy in an extensive computa-
tional study.99 We developed a very efficient method called
weighted solvent-accessible surface area (WSAS) to reproduce
the conformational entropies computed by NMA.196 The
WSAS method requires no minimization of MD snapshots
prior to conformational entropy calculations. It has been
successfully used to predict the absolute binding affinities for a
variety of systems, including orexin receptor 2115 and
cannabinoid receptor 1.116

Besides the contribution from entropy, the quality of the
MM/PB(GB)SA calculations is dependent on the quality of
the MD snapshots in representing the entire conformational
space sampled as well as several parameters used for the
description of the molecular system, such as the force field, the
dielectric constants, and the set of atomic radii. Moreover,
MM/PBSA and MM/GBSA show some limitations74 in the
estimation of binding free energies of highly polar or charged
molecules, since the uncertainty in the calculation of the
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solvation energy is proportional to the polarity of the
considered molecules. Furthermore, contributions of structural
water molecules, which bridge the key receptor−ligand
interactions, are not taken into account well for predicting
the binding free energies by implicit solvation models.117

Pentikaïnen et al.89 investigated the performance of the
MM/GBSA, MM/PBSA, and solvation interaction energy
(SIE)118,119 approaches in terms of their virtual screening
efficiency and ability to predict the binding affinities of five
different protein targets. Protein−ligand complexes were
prepared by two important methods in structure-based drug
design: molecular docking and ligand-based similarity search
methods. The results show a significant difference between
different binding energy calculation methods. They suggested
that these techniques should be used with caution in virtual
screening or binding affinity estimation. Moreover, another
work assessed the performance of four docking scoring
functions and the FEP, MM/GBSA, and QM−MM/GBSA
methods on a series of PLK1 inhibitors.106 The ranking
performance of FEP is optimal (Spearman correlation
coefficient rS = 0.854) and MM/GBSA, which requires much
less simulation time (about one-eighth that of FEP), gives a
comparable prediction (rS = 0.767). In addition, the ranking
performance can be significantly improved by treating the
ligands with a quantum mechanics (QM) method. The
combination of QM/MM molecular docking120−123 and
MM/GBSA calculations has been successfully utilized to
reproduce the X-ray geometries of protein−ligand complexes
with halogen bonding.124

Besides, binding free energy prediction is strongly influenced
by the solute dielectric constant. Therefore, the energy should
be carefully determined on the basis of the characteristics of
the protein−protein/ligand binding interfaces. The following
section will discuss this issue in detail.

4. THE POLAR SOLVATION ENERGY AND ENTROPY
TERMS IN MM/PB(GB)SA CALCULATIONS

Many chemical reactions and biological processes are carried
out in solvents, especially in water. Solvation effects are
therefore critical to investigate the structures and functions of
biological systems such as proteins, DNAs, and RNAs and
interactions between them. In the MM/PB(GB)SA methods,
the solvation energy is divided into polar and nonpolar
contributions. We focus on the polar solvation energy in this
section.

4.1. The Polar Solvation Energy Term in MM/PBSA

The polar solvation term in eq 7 was originally calculated to
solve the Poisson−Boltzmann equation (PBE) numerically
using a finite difference (FD) solution.125−128 In a
biomolecular system with no mobile ions, the Poisson equation
is described as129

r r r( ) ( ) 4 ( )ε φ πρ∇· ∇ = − (9)

where ε(r) is the dielectric distribution function for the
solvated molecular system, φ(r) is the electrostatic potential
distribution function, and the ρ(r) is the fixed atomic charged
density based on the solute atom positions r. However, in most
cases of biomolecular systems, because of the presence of salt
in the solution, the electrostatic potential φ(r) is obtained by
solving the following equation:129
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where λ(r) is the predefined ion-exclusion function, which has
a value of 0 within the Stern layer and the molecular interior
and a value of 1 outside the Stern layer, zi is the charge and ci is
the bulk number density of ion type i far from the solute at a
given temperature T, and e is the electron charge. The
summation in eq 10 is over all of the different ion types, and
when both the ionic strength and electric field are weak, the
nonlinear PBE can be linearized for easier numerical
solutions:129

r r r r( ) ( ) ( ) 4 ( )sol
2ε φ ε κ φ πρ∇· ∇ − = − (11)

where e I
k T

2 8 2

sol B
κ = π

ε is the modified Debye−Hückel parameter,

εsol is the solvent dielectric constant, and I is the ionic strength
of the solution. The salt term in the PBE can be linearized
when the exponent of the Boltzmann factor is close to zero.
However, the approximation apparently does not hold in
highly charged biomolecular systems.130,131 Thus, it is
recommended that a full nonlinear PBE solver should be
used for such systems.
Obtaining analytical solutions of the linearized and nonlinear

PBEs is extremely complicated, even in the few simple cases for
which they exist. In the past decades, however, several
computational methods have been developed126 to solve the
PBE. The classical FD method,127,128 based on the super-
imposition of a regular rectangular Cartesian mesh over the
system where the PBE can be solved, involves the following
steps: (1) mapping atomic charges to the FD grid points; (2)
assigning nonperiodic/periodic boundary conditions, i.e.,
electrostatic potentials on the boundary surfaces of the FD
grid; (3) applying a dielectric model to define the high-
dielectric (e.g., water) and low-dielectric (the solute interior)
regions and mapping them to the FD grid edges. As a result of
the developments in computational algorithms and hardware
in recent years, several investigations of the efficiency and
accuracy of numerical methods for the linearized equation have
appeared,128,132,133 and over the past few years a few new
algorithms have been developed for the numerical solution of
PBE.134−136 In pbsa137 (a module in the AMBER pack-
age,138,139 one of the most popular computer tools to solve
PBE), four common linear FD PBE solvers are imple-
mented:140 modified incomplete Cholesky conjugate gradient
(ICCG), geometric multigrid, conjugate gradient (CG), and
successive over-relaxation (SOR). In addition, six nonlinear FD
solvers are implemented:141 inexact Newton (NT)/modified
ICCG, NT/geometric multigrid, CG, SOR, and its improved
versions, adaptive SOR and damped SOR. The progress made
in developing more accurate and efficient solutions to model
the electrostatics in biomolecular systems, such as the finite
element142−145 and boundary element146−148 methods, was
recently reviewed by Alexov et al.126

The PBE is mathematically a three-dimensional second-
order nonlinear elliptic partial differential equation. Using FD
schemes for solving the PBE, various solvers have been
developed, including PBSA,137 MIBPB,149 DelPhi,150

UHBD,151 ZAP,152 and many others. The ZAP algorithm,
developed by Nicholls et al., was incorporated into the
CHARMM153 package, providing a fast, stable, smooth
permittivity model for implicit solvation energy calculations.154
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Unfortunately, many popular PB methods do not converge.
Specifically, their solution changes dramatically when the grid
mesh is refined. This happens because of the discontinuous
dielectric constants used across the solvent−solute interface.155
To our knowledge, the only existing second-order convergent
PB method for realistic protein surfaces is the MIBPB
approach (https://weilab.math.msu.edu/MIBPB/). That is,
the accuracy increases 4 times when the grid mesh size is
halved.149 In MIBPB, the grid mesh size should be set in the
range of 0.2 to 1.2 Å, and a default value of 0.8 Å is used if the
size is not specified. The convergence of MIBPB for protein−
ligand binding analysis has been carefully tested recently,
showing a relative error of 0.4%.156

Although numerical algorithms have been implemented to
solve the PBE, currently all serial PBE solvers on CPUs are
capable of calculating the electrostatics of only relatively small
biomolecules and systems because of the intensive demand of
computational resources (both time and memory) required to
calculate the electrostatics of large systems (such as
biomolecules and the complexes between them).157−159 To
obtain accurate results for large systems, even the fastest
solvers, such as the DelPhi program,150 typically take more
than half a day to perform the calculations at the minimum
requirement of grid resolution. Such computational efficiency
is insufficient to meet current researchers’ requirements in
practical applications. Therefore, significant acceleration is
required to make these serial algorithms suitable for studying
large systems. In addition to developing new algorithms, there
are two ways to speed up the current PBE solvers: (1) soft
acceleration, that is, running parallel solvers on multiple CPUs,
and (2) GPU acceleration. Several popular PBE solvers have
been parallelized via different techniques to allow users to
perform intensive calculations on parallel computers/clusters,
such as pbsa,137,160 APBS,161 and DelPhi.159 Solving the PBE
on CUDA-based GPUs is much more efficient.157,158,162 A FD
scheme with the successive over-relaxation approach in the
DelPhi package was implemented on NVIDIA GPUs,
achieving a speedup of ∼10 times in both the linearized and
nonlinear cases.157 In the AMBER 2018 release, two new
solvers were added to use NVIDIA GPUs to accelerate the FD
PB calculations.158 The GPU version of pbsa is called
pbsa.cuda. It should be pointed out that only the numerical
solvers are ported to the GPU platforms, while the other pbsa
system building routines remain unchanged. A fully GPU-
enabled pbsa and associated MM/PBSA functions are still
under development. More details on the GPU version of pbsa
are provided in the AMBER 2018 reference manual.139

The advantage of the PBE is that the water in the solution is
reduced to a dielectric medium with a uniform dielectric
constant. This treatment of the solvent greatly simplifies
simulations of biomacromolecules. However, the disadvantage
of implicit solvent is the use of the mean-field approximation.
When a certain concentration of high-valent ions in the
aqueous solution leads to ionic interactions and correlation
enhancement, the PBE cannot accurately describe those kinds
of systems.130,131

4.2. The Polar Energy Solvation Term in MM/GBSA

In MD applications, the associated computational costs are
often very high, as the PBE needs to be solved every time the
conformation of a molecule changes. To solve the problem, the
GB model, a faster and more efficient approximation of PBE,
has been developed. In a GB model, atoms are described as

charged spheres whose internal dielectric constant is lower
than that of the environment.163,164 The screening that each
atom experiences is determined by the local environment. The
more an atom is surrounded by other atoms, the less its
electrostatics will be screened since it is surrounded by lower-
dielectric material. This property is called descreening of one
atom by another. Different GB models calculate atomic
descreening differently. Descreening is used to calculate the
Born radius of each atom, and thus, the Born radius of an atom
describes the degree of descreening. A large Born radius
represents small screening (strong electric field), as if the atom
is in vacuum. A small Born radius represents large screening
(weak electric field), as if the atom is in bulk water. The
canonical GB equation165 with the absence of salt can be
written as166
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where rij is the distance between atoms i and j, qi and qj are the
partial charges of those atoms, and αij is the geometric average
of the efficient Born radii αj and αj. It is assumed that the atom
is uniformly filled with a material with a low dielectric constant
(εin = 1) and the molecule is surrounded by a solvent with a
high dielectric constant (εsol = 80 for water at 300 K).
Case et al. also derived an extension of the basic GB model

that allows for the treatment of mobile ions167 by modification
of eq 12 to

G
f q q

f
1 exp( )

i j

i j
GB

in

GB

sol , GB

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
∑

ε
κ

ε
Δ = − −

−

(14)

From the GB equation, it can be seen that the GB
calculation is strongly dependent on the efficient Born radii.
The first GB model implemented in the AMBER software
package, which is called the GBHCT model (igb = 1), was
developed by Hawkins, Cramer, and Truhlar168,169 with the
parameters described by Tsui and Case.170 Another widely
used GB model, GBOBC, was developed by Onufriev, Bashford,
and Case62,110 (igb = 2 or 5 in AMBER). In this model, the
effective Born radii are readjusted to account for the interstitial
spaces between atom spheres missed by the GBHCT

approximation. As such, GBOBC has a closer approximation
to true molecular volume than GBHCT, albeit in an average
sense. The GBn models (igb = 7 or 8 in AMBER) yield results
in considerably better agreement with PB and explicit solvent
than the GBOBC models on molecular surfaces of MD
snapshots under numerous circumstances.171 The GBn
model, parametrized for peptides and proteins, is not
recommended for nucleic acids. The GB models have also
been implemented in CHARMM,153 referring to the works
reported by Brooks et al.163,172

More recently, Onufriev et al. presented a grid-based surface
implementation of the “R6” integration173,174 of the GB model,
named GBNSR6,175 in which the effective Born radii were
calculated numerically. The model can be described as

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.9b00055
Chem. Rev. XXXX, XXX, XXX−XXX

I

https://weilab.math.msu.edu/MIBPB/
http://dx.doi.org/10.1021/acs.chemrev.9b00055


R
r r

r r
S

1
4

di
V

i

i

3
6∮π

= −
−

| − |
·−

∂ (15)

where ∂V represents the molecular surface, dS is the
infinitesimal surface element vector, and ri and r are the
positions of atom i and the infinitesimal surface element,
respectively. To reflect the physiological conditions, the ionic
strength is set to 0.145 M. The results demonstrate that the
accuracy of GBNSR6 with a relatively coarse grid resolution of
h = 0.5 Å in computing binding free energies for a set of small
protein−ligand complexes remains in the range of kBT ∼ 0.6
kcal/mol, relative to the grid limit (h → 0). Therefore, the
default grid resolution of h = 0.5 Å is recommended because
the calculations are reasonably fast on a personal computer.
Compared with the second-order convergent PB solver
(MIBPB149), GBNSR6 gives highly correlated results with r2

= 0.97 and a root-mean-square error of 1.43 kcal/mol. Recent
benchmarks show that the electrostatic binding energies
computed by GBNSR6 are in good agreement with the
numerical PB reference.175,176

4.3. Theory, Implementation, and Limitations of the
Variable Dielectric Model in MM/GBSA

The continuum model is used to calculate the polar solvation
energy of a system by solving the PB or GB equation. In
practice, the most common user-tunable parameters for MM/
PB(GB)SA include the solvent and solute dielectric constants.
Among them, the solvent dielectric constant εsol represents the
nature of the solvent used in the MD simulations (εsol = 80 for
water). However, the solute interior dielectric constant εin is
especially important in calculating the polar solvation energy,
which indirectly affects the accuracy of the binding free energy
prediction.177 The solute dielectric constant εin is generally
fixed with a value of 1 by default.178 Since ligand−receptor
complexes are not continuous uniform dielectric media, the
choice of using a single solute dielectric constant is
controversial51,88,94,179,180 and could even lead to large errors.
In particular, when sorting the ligand−receptor binding free
energies, it was observed that the use of εin = 1 resulted in an
overestimation of the ligand−receptor electrostatic interaction
for some systems.180−183

Since the atomic charges used to calculate the polar
solvation energy have fixed values, they cannot be adapted to
respond to the dielectric changes when a solute is solvated in
the solvent. Therefore, a charge model that takes the solvent
effect into account is critical for the accurate calculation of
solvation free energies. Applying a single dielectric constant to
describe the heterogeneous dielectric environment of a solute

may be problematic. However, for the sake of simplicity, a
single dielectric constant is usually used for the whole solute in
both the PB and GB models. Instead of using the default
dielectric constant, two improved methods have been
developed to find the best dielectric constant for a given
molecular system that is expected to achieve the best
prediction of the polar solvation energy. The first method is
based on systematic scanning, in which the solute dielectric
constant is scanned from 1 to 25, and the best dielectric
constant strongly depends on the characteristics of the whole
system.51,88,101,184 The second approach applies variable
dielectric constants for different types of residues.179,180 For
the first method, several papers have been published that
explore the dependence of binding free energy predictions on
the solute dielectric constants and suggest that the results are
potentially improved by using a larger dielectric con-
stant.74,78,185−187 Genheden and Ryde estimated the optimum
dielectric constant and obtained diverse results (εin = 1−25)
depending on the solvation model and the tested proteins.51

Such results have also been observed in other studies, and
although the optimum value of εin is dependent on the
characteristics of the binding site (a higher εin for a highly
charged binding site and a lower εin for a hydrophobic
site),78,88 frequently the calculations are best with εin = 2−
4,94,101,188 especially in larger data sets of diverse proteins.98,184

The solvation free energy prediction method based on
variable dielectric constant (Figure 2) was first tested by
Ravindranathan et al.180 on six pharmaceutically relevant
targets, namely, CDK2, fXa, p38_u, PDE10A, human carbonic
anhydrase, and p38_pp, in complex with several ligands. They
assigned five different εin values (1, 2, 4, 8, and 20) for each
type of polar or ionizable residue (Ser, Thr, Asn, Gln, His, Lys,
Arg, Asp, or Glu) and assigned the same dielectric constant for
the other types of residues. Then, for each system, the best set
of dielectric constants evaluated in terms of r2 and predictive
index (PI) was selected and discussed. However, this approach
results in only a small improvement in the r2 and PI values
compared with the standard electrostatic treatment. Especially
for the systems whose binding sites composed of nonpolar
residues and the ligand−receptor electrostatic interactions are
negligible (PDE10A and p38_pp), the predictions are not
significantly improved. Mulakala and Viswanadhan189 pre-
dicted the binding free energies for two distinct data sets using
SGB-NP,190 VSGB-1.0,191 and VSGB-2.0192 (with a variable
dielectric model and a novel energy function) and found that
the VSGB-2.0 model may approach the accuracy needed for

Figure 2. Graphical representation of the variable dielectric constant MM/GBSA method.
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determining the absolute free energy via linear regression
without any conformational sampling.
The MM/PBSA method of variable dielectric constant has

also been used to rank the inhibitory activities of a set of viral
inhibitor peptide (VIRIP) mutants that have known IC50
values against HIV-1 gp41 fusion peptide.179 The authors
originally assigned the dielectric constant of the wild-type
VIRIP−gp41 complex to 2 and set varying dielectric constants
for the mutated residues. In contrast to the previously reported
scheme, the dielectric constant of each mutated residue was
assigned using the following rules: a value of 2 was assigned for
the dielectric constant of nonpolar residues, a value of 3 for
polar residues, and a value of 4 for charged residues. The
authors obtained an improved correlation between the
experimental activities and MM/PBSA binding energies
compared with that provided by the standard method in
which a single dielectric constant of 2 was used for all
complexes.179 More recently, Zhang et al. proposed a new
strategy by combining the interaction entropy approach
recently developed for efficient computing of the entropy
change with the use of residue-type-specific dielectric constants
in the framework of MM/GBSA, and they obtained optimal
results for the predictions of protein−protein binding affinities
with optimal εin values of 2.7 for charged residues and 1.1 for
noncharged residues (rP = 0.78 and mean absolute error = 2.8
kcal/mol).193

In fact, the choice of the solute dielectric constant is strictly
system-dependent and requires precise study of the binding
sites to obtain the most suitable εin.

88 The Spearman
correlation coefficient rS is often used to assess the correlation
between experimental and predicted binding free energies. We
systematically studied the effect of the solute dielectric
constant on binding free energy calculations for a set of six
different protein systems (α-thrombin, avidin, cytochrome c
peroxidase, neuraminidase, P450cam, and penicillin).88 Three
different dielectric constants, εin = 1, 2, and 4, were evaluated
in the PB and GB calculations. We found that the best
dielectric constant is system-dependent. For the neuraminidase
and α-thrombin systems, which are characterized by highly
charged binding sites and the ability to form ion−ion
interactions with negatively charged ligands, using εin = 4 is
necessary to achieve good correlation for the MM/PBSA
calculations (rS = 0.68 and 0.81, respectively). A slightly better
result was obtained using the GBHCT model with εin = 4 (rS =
0.78 and 0.90, respectively). MM/GBSA achieved good results
for α-thrombin with εin = 2 (rS = 0.88 and 0.91 for GBHCT and
GBOBC, respectively). Yang et al. obtained consistent results for
α-thrombin by applying MM/PB(GB)SA with εin of 1 and 4 to
calculate the binding free energies for 28 ligands.184 In this
case, εin = 4 gave the best correlation (r2 = 0.74 for PB and
0.72 for GB). Additionally, we have carried out related research
work on the prediction of binding free energies based on
variable dielectric constants and made some progress (data not
published). We believe that the application of variable
dielectric constants can help to improve the accuracy of
binding free energy predictions.

4.4. Comparison between PB and GB

As mentioned above, the PB calculations are significantly time-
consuming, especially when a finer grid mesh and a larger
number of energy calculations are used to achieve better
convergence.83,149 Alternatively, the GB method, which is
considered as a simple approximation to the PB method,

requires much less computer resources than the PB method.
For example, we performed a test and found that to perform a
complete analysis for an ensemble of 100 snapshots from a
constant-temperature MD simulation at 300 K, it takes several
minutes to obtain the binding free energy of the popular Ras−
Raf system72 using MMPBSA.py194 with a GB model, whereas
the computational duration is ∼50 times longer with the PB
model. The accuracy of the calculated energy using the GB
approach is compromised at the expense of computational
speed. However, the correlation and the computational
demands make the GB approach attractive, especially for
qualitative analysis, though the GB method in principle is not
as accurate as PB.178

Many studies comparing the performance of MM/PBSA and
MM/GBSA indicated that the predicted result strongly
depends on the system being studied. Ryde et al. predicted
the binding free energies of seven biotin analogues and avidin
with the MM/PBSA and MM/GBSA methods.79 They found
that the GB calculation is much faster than the PB calculation
but gives a less accurate result, namely, a MAD of 35 kJ/mol
for MM/GBSA compared with 16 kJ/mol for MM/PBSA.
Moreover, the estimated ΔGbind values with MM/GBSA are
coincidentally lower than the experimental data (by 8−71 kJ/
mol), whereas the results with MM/PBSA are fairly well
dispersed around the experimental values (average error =
−0.5 kJ/mol). In our previous work, we comprehensively
studied how the ranking performance of the binding free
energies is influenced by the force field and partial charge
model in MM/PBSA and MM/GBSA calculations.97 In most
cases, the ranking capability of MM/PBSA with Tan’s
parameters is better than that of MM/GBSA (GBOBC1).
However, several studies reported that the results predicted by
MM/PBSA are worse than those by MM/GBSA.101,195,196 The
optimal prediction of MM/GBSA with a solute dielectric
constant of 2.0 (rP = 0.66) is better than using MM/PBSA (rP
= 0.49) for 98 protein−ligand complexes.101 In addition, the
MM/PBSA results are of similar quality,96,98,197 compared with
MM/GBSA. Gohlke and Case studied how the predictions
depend on the polar solvation energy and suggested that the
radii selected in calculations strongly impact the MM/PBSA
results. Moreover, different variants of GB models result in
different predictions.66

4.5. Efficient Entropy Calculation Methods To Estimate the
Entropy Change upon Ligand Binding

It is well-known that entropy plays important role in
characterizing the absolute binding free energy upon ligand−
protein interaction,198−206 but entropy estimation is usually
very time-consuming. For example, NMA, which is one of the
most widely used entropy estimation methods, needs to
expand the covariance matrix of internal coordinates for all of
the degrees of freedom and therefore is not suitable for large
systems (i.e., systems with protein length >350 residues).198

Meanwhile, many other methods also need very long
simulation times to provide convergent predictions of
entropy.202,203,206 Consequently, numerous studies simply
ignore the entropy term in end-point free energy calculations,
which, however, leads to serious overestimation of the
predicted binding free energies. Fortunately, several simplified
calculation methods have been proposed in recent years, such
as the truncated NMA entropy method96 and the interaction
entropy method.114 In the truncated NMA entropy method,
the protein−ligand complex is truncated into a smaller
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structure with the center at the center of mass (CoM) of the
ligand, and the residues around the ligand are retained.
Usually, the truncation radius is set to 8−16 Å. The truncated
structures are subsequently subjected to a traditional NMA
calculation. Because of the reduced structures, the NMA
calculations require much less time than those for the entire
complex structures. We also assessed the performance of the
truncated method in reproducing the absolute NMA entropy
of the full-length structure, in which the use of a radius cutoff
of 9 Å for the truncated structures is sufficient to reproduce the
absolute entropies of the full-length structures for most cases.99

Moreover, our additional evaluation on a large data set
(PDBbind data set with >1700 structures) also showed that
the end-point binding free energy calculations incorporating
the truncated NMA entropy can, to some extent, improve the
prediction accuracy both in terms of the absolute binding free
energies and the correlation with experimental data.99

The interaction entropy method is a more recently
developed entropy estimation method that considers only
the fluctuations of the ligand−receptor interactions during the
MD simulations and thus does not need additional computa-
tional cost.114 This method has been successfully used in many
aspects of molecular interactions such as calculating hot spots
for protein−protein interactions,193,207−210 predicting absolute
binding free energies for ligand−protein complexes,211−215 etc.
In one important work, Aldeghi et al. systemically compared
the accuracy of MM/PBSA and the alchemical method (TI)211

and found that incorporation of the interaction entropy into
MM/PBSA can significantly improve its performance across all
of the tested protocols, indicating that the interaction entropy
method is a highly efficient method to improve the
performance of the end-point binding free energy calculations.
Moreover, we also systemically assessed the performance of the
interaction entropy method on the PDBbind data set with
>1700 structures for six commonly used AMBER force fields
(with 1 ns MD simulation for each system). We found that this
approach can significantly improve the overall performance for
both MM/GBSA and MM/PBSA in any investigated cases
(including different interior dielectric constants, different force
fields, etc.) for MD simulations, suggesting that this approach
is a very useful tool for entropy estimation.

5. THE NONPOLAR SOLVATION ENERGY TERM IN
MM/PB(GB)SA CALCULATIONS

The nonpolar contribution of the solvation energy results from
solute cavity formation within the solvent and van der Waals
interactions between the solute and the solvent around the
cavity. The nonpolar solvation free energy is typically given by
an empirical formula that is proportional to the solvent
accessible surface area of the solute:

G bSASAnp
SA γΔ = · + (16)

where γ is the surface tension constant and b is a correction
constant (γ = 0.00542 kcal·mol−1·Å−2 and b = 0.92 kcal/mol in
the AMBER package). Regardless of the poor accuracy of the
SASA model, it has been widely used in the simulations of
molecular mechanics and binding affinity predictions.
The limitations of this simplified SASA model have been

demonstrated previously. The total nonpolar solvation energy,
with a small difference between two large components, is
independent of the solute surface area or volume but
nevertheless is correlated with the repulsive and attractive

components of the nonpolar contribution computed from the
TIP3P simulations.216 To solve that problem, an improved
method has been proposed217,218 in which atom-specific
surface tension parameters are adopted:

G SASA
i

N

i inp
SA

1

∑ γΔ = ·
= (17)

A more modern method in which the nonpolar solvation
energy is divided into cavity and dispersion (CD) terms was
reported by Luo et al.219 A cavity capable of accommodating
the solute in the solvent is created, and then the nonpolar
solute is introduced into the cavity. The energy for cavity
formation is often estimated using a linear relation to the
molecular surface (MS), similar to the SASA model. Hence,
the nonpolar solvation energy should be described as

G b GMSnp
CD

dispγΔ = · + + Δ (18)

A solvent-accessible volume (or surface) integration can be
utilized to calculate the dispersion term (ΔGdisp). The scaling
factors are typically set to γ = 0.0378 kcal·mol−1·Å−2 and b =
−0.569 kcal/mol in the AMBER package.
The polarizable continuum model (PCM),220 with separate

terms for cavitation, dispersion, and repulsion energies, usually
gives more accurate results than SASA. Genheden and Ryde
proposed that the nonpolar solvation energy computed by
SASA is 3−8 times smaller and of the opposite sign compared
with the same energy computed by PCM.24 They studied the
binding of benzene to an engineered nonpolar cavity in T4
lysozyme and found that the SASA and CD models yield
similar results and that the PCM model is slightly better.221

Although several attempts have been made, none of the
above-mentioned methods (namely, the SASA, CD and PCM
methods) can yield accurate predictions for systems with more
water-exposed binding sites222 because the continuum models
ignore all information about water molecules (including the
number and entropy changes) before and after ligand
binding.24 One approach to solve this problem is to treat the
water molecules as a part of the receptor, and improved results
have been obtained for some cases;223−225 however, the
performance is strongly impacted by the number of explicit
water molecules,226 and sometimes this approach yields worse
predictions.227 Another way is to replace the desolvation in
MM/GBSA by the free energy combined with displacement of
binding-site water molecules upon ligand binding estimated by
the WaterMap approach, which yields varying re-
sults.183,228−230

Unfortunately, the nonpolar distribution of the solvation free
energy has received less attention, to a certain extent because
the smaller value of the energy compared with the polar
solvation energy. As far as we know, no relevant works on
assessment of nonpolar solvation energy predictions have been
reported in recent years, and we hope that some will be
published in the future because the nonpolar contribution is
crucial for obtaining accurate estimates of absolute hydration
free energies using implicit solvent models.

6. NEW TOOLKITS AND WEB SERVERS FOR
MM/PB(GB)SA CALCULATIONS

Over the past few years, numerous computational toolkits for
MM/PB(GB)SA calculations have been developed and
released. MMPBSA.py is a user-friendly Python script
implemented in AMBER that automates energy analysis of
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the snapshots extracted from an MD trajectory using ideas
generated from the continuum solvent models.194 An older
Perl script called mm_pbsa.pl has functionality similar to that of
MMPBSA.py, but first implicit snapshots (without the water)
must be extracted from the production runs for use in the
MM/PBSA and MM/GBSA calculations. Free Energy Work-
flow (FEW) is another set of Perl scripts (including the main
script FEW.pl and other Perl modules) developed in AMBER
to automate free energy calculations based on TI, MM/PBSA,
or LIE.231,232 To integrate high-throughput MD simulations
with binding energy calculations, g_mmpbsa was developed as
one part of the Open Source Drug Discovery (OSDD)
consortium, and it implements the MM/PB(GB)SA ap-
proaches using subroutines written in-house or sourced from
the GROMACS and APBS packages.233 GMXPBSA is another
user-friendly suite of Bash/Perl scripts for streamlining the
MM/PBSA calculations on structural ensembles derived from
GROMACS trajectories to automatically compute binding free
energies for protein−protein or protein−ligand complexes.234

The iAPBS interface written in C/C++/Fortran allows access
to the APBS functionality from NAMD.235 This module can be
used to perform implicit solvent MD simulations, to write out
electrostatic maps for the purpose of visualization, and to
perform MM/PBSA calculations directly with NAMD. In
addition, the iAPBS interface can serve as the linker between
NAMD and other popular software packages like AMBER and
GROMACS. FESetup is a tool to automatically set up
alchemical free energy simulations for protein−ligand com-
plexes like TI and FEP.236 Postprocessing methods, such as
MM/PBSA and LIE, are also supported.236 In a previous work,
to facilitate the prediction of binding affinities for protein−
protein/ligand systems, we released an easy-to-use pipeline
tool named Calculation of Free Energy (CaFE) to perform
MM/PBSA and LIE calculations.237 CaFE, powered by the
VMD and NAMD programs, is capable of handling numerous
static coordinates and MD trajectory file formats created by
diverse molecular simulation packages and supports various
force field parameters.
In addition to the MM/PB(GB)SA toolkits listed above,

several Web servers based on MM/PB(GB)SA have been
developed and are open to all users. ACFIS, a Web server for
fragment-based drug discovery, was developed in order to
improve the effectiveness of drug discovery.238 CAND_GEN,
one of the three computational modules in ACFIS, is a tool to
generate hit candidates. Users can choose a binding free energy
calculation method (MM/PBSA or MM/GBSA) to rescore the
hit candidates. SAMPDI was designed to predict changes in
protein−DNA binding free energies upon missense mutations
using a modified MM/PBSA approach.239 More recently, we
developed a Web server for fast AMBER rescoring for PPI
inhibitors (farPPI) that offers a freely available service for
rescoring the docking poses for PPI inhibitors using MM/
PB(GB)SA methods.240

Although MM/GBSA is more computationally efficient than
most end-point free-energy calculation methods, it still takes
much more time than the scoring functions commonly used in
protein−protein docking. Hence, some scoring functions based
on energetic terms extracted from the MM/PB(GB)SA
methods have been developed and applied for molecular
docking.187 PBSA_E, a new free energy estimator based on the
MM/PBSA descriptors, was developed by Zhang et al.241

Chowdhury et al. refined docking protocols using shape
complementarity, electrostatics affinity functions, and knowl-

edge-based interface propensity and utilized the GBSA
solvation energy to rerank the structures.242 The time cost of
MM/GBSA is mainly used to calculate the polar desolation
energy term based on the GB model. In response to that point,
our group developed HawkRank, a force-field-based scoring
function with energy terms similar to those in MM/GBSA.243

Our results show that HawkRank yields better predictions than
three other scoring functions, namely, ZRANK,244 Fire-
Dock,245 and dDFIRE,246 according to the total number of
hits and modified success rate (MSR). Moreover, MM/GBSA
rescoring is competent to distinguish correct protein−protein
binding structures from decoys, and the use of HawkRank
followed by MM/GBSA rescoring is an efficient protocol to
improve the predictions of protein−protein docking.

7. APPLICATIONS IN SMALL-MOLECULE DRUG
DESIGN

With the advantage of requiring much lower computational
cost while giving prediction accuracy comparable to that of the
much more time-consuming pathway methods (i.e., FEP and
TI), MM/PBSA and MM/GBSA have been widely used in the
field of small-molecule drug design, such as in postprocessing
of structure-based virtual screening. Moreover, they are also
very useful tools for analyzing the binding details of drug−
target interactions since they can be conveniently decomposed
into different energy terms (eqs 5−8) to capture vital region/
residue receptor−ligand interactions, which are very important
for rational drug design. In this section, we will review the
associated progress of using MM/PB(GB)SA in small-
molecule drug design.

7.1. Applications in Virtual Screening

In the early stages of structure-based virtual screening, large
compound databases are usually screened using scoring
functions from molecular docking to identify promising drug
candidates. In molecular docking, with the conformation of a
protein target determined from X-ray, NMR, or theoretical
modeling, a ligand is brought close to the specific binding site
of the target, and then the possible poses and conformations of
the ligand are sampled. For the sake of fast computation,
simple scoring functions are usually employed to estimate the
binding affinity for a given docking pose. Some important
energy terms, such as the solvation free energy, are simplified
or totally ignored in most docking scoring functions.
Therefore, a single docking scoring function may have
difficulty in correctly predicting the binding poses and binding
affinities in virtual screening.247 Hence, more advanced
computational methods are needed for molecular docking in
rational virtual screening.248−254 In many cases, the combina-
tion of molecular docking and MM/PB(GB)SA rescoring has
proven to be a promising strategy in both the identification of
the correct binding poses and the correct ranking of the
binding affinities of a series of ligands.94,96,101,255−261 For
example, Sgobba et al. assessed the “screening power” of the
MM/PB(GB)SA approaches in rescoring the docking
conformations of ligands targeting six drug targets,96 and
they found that in most cases MM/GBSA can give a higher
area under the curve (AUC) value and enrichment factor
compared with the traditional docking approaches. A similar
conclusion was derived by Zhang et al., who enlarged the
assessment to 38 drug targets in the DUD database with up to
∼0.7 million actives and decoys.258 Besides assessing the
screening power of the MM/PB(GB)SA rescoring, our group
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also assessed the “docking power” of MM/PB(GB)SA to 98
targets, and we found that MM/GBSA rescoring can markedly
improve the ratio of finding the correct binding poses of
ligands in most cases (successful rate = 69.4%).101 The
definition of each assessment based “power” in molecular
docking is fully presented in Liu’s work.262

In the past decades, the use of MM/PB(GB)SA in virtual
screening has been limited to as many as a few hundred of the
top docking hits.95 However, with the dramatic increase ing
computer power in recent years, MM/PBSA and MM/GBSA
have been applied for rescoring of thousands of compounds
prescreened by molecular docking.94,258,259 The potential
power of the MM/PB(GB)SA approaches in discriminating
true binders from a much larger number of decoys (the so-
called screening power) has been demonstrated in high-
throughput virtual screening studies.96,263−268 For instance,
using the MM/GBSA approach, Amato et al. identified a set of
chemical fragments targeting PHD zinc fingers (a target once
considered with low ligand ability), and they also successfully
crystallized the first complex with a chemical fragment binding
in the anchoring pocket of the histone binding site of PHD
zinc fingers.265 Moreover, Li’s group carried out docking-based
virtual screening with MM/GBSA rescoring for human
dihydroorotate dehydrogenase (hDHODH).264 They success-
fully identified a series of hDHODH inhibitors, and the best
inhibitor from their initial virtual screening has an IC50 of 110
nM. A similar example was also reported by Ferreira de Freitas
et al., who used MM/GBSA rescoring for the initial virtual
screening and found a series of low-micromolar inhibitors
targeting the HDAC6 zinc-finger ubiquitin binding domain.266

Besides, our group employed MM/GBSA to identify actives
targeting different drug targets, such as macrophage migration
inhibitory factor (MIF)269 and anaplastic lymphoma kinase
(ALK).270 All of the studies found nanomole-level actives,
implying that the use of end-point methods such as MM/
GBSA is indeed a very promising approach in virtual screening.
Besides the applications in virtual screening, the end-point

approaches have been also used in the lead optimization stage
of drug design campaigns for fast and accurate prediction of
the binding affinities of the newly modified com-
pounds.68,73,271−274 Recently the capability of MM/PB(GB)SA
rescoring in lead optimization has been investigated, and more
and more advanced molecular simulations and free energy
calculations with MM/PB(GB)SA have been successfully
applied to the optimization of lead compounds.73,275−277 For
instance, by employing molecular docking and MM/GBSA
rescoring, Xu et al. successfully found and optimized several
novel-scaffold selective inhibitors targeting PfDHODH,268

where the best optimized inhibitor has an IC50 of 6 nM with
40% oral bioavailability and >14000-fold species selectivity
over hDHODH. Taddei et al. also used MM/GBSA to design
and optimize a series of inhibitors with the 1,4,5-trisubstituted
1,2,3-triazole scaffold targeting Hsp90,277 in which one
compound, SST0287CL1, was shown to have in vitro and in
vivo activities comparable to those of the clinically tested
Hsp90 inhibitor NVP-AUY922. Moreover, our group also
employed MM/GBSA to analyze, design, and optimize
antiresistant ALK inhibitors, and in that work we found what
is to our knowledge the best antiresistant inhibitor (IC50 = 0.27
nM) with very high binding selectivity in 35 kinases.270

The above discussions have shown numerous successful
cases of using the end-point methods for rational drug design
or lead optimization. However, as a theoretical method whose

parameters come largely from finite experimental sources,
these methods may also be biased to some well-tested systems
and fail to correctly identify the true binders from the decoys
in many cases. To alleviate this problem, our group proposed
an energy-decomposition-based virtual screening method
named MIEC-SVM,277,278 which combines molecular inter-
action energetic components (MIECs) derived from the MM/
GBSA decomposition and machine learning methods (support
vector machine, SVM) to construct personalized prediction
models to distinguish actives from decoys. This method has
been successfully used in many cases such as designing novel
inhibitors for ALK279 and distinguishing binders from
nonbinders for luciferase,280 HIV-1 protease,278,281,282 etc. In
the case of ALK, we successfully identified seven strong novel
inhibitors (<10 μM), four of which show nanomole-level
activities.279 All of the cases shown above imply that the end-
point methods are indeed very promising tools for rational
drug design.
Although MM/PBSA and MM/GBSA have been success-

fully applied in virtual screening, optimization of lead
compounds, and detailed binding analyses, the prediction
results are sensitive to many calculation conditions, such as the
atomic charges, interior dielectric constants, MD simulation
length, entropy calculations, etc.88,97,99 Different settings may
result in very different binding affinities even for the same
system in study. Thus, one should keep in mind that system
dependence always exists and that the selection of appropriate
computational techniques depends on the characteristics of the
studied system and the information available. Currently there
is no universally accurate and reliable solution within reach,
and innovative approaches are definitely needed, e.g., to tackle
the problems arising from target flexibility and solvent
molecules residing inside or around the binding pocket.

7.2. Analysis of Critical Interactions for Rational Drug
Design

As mentioned above, MM/PBSA and MM/GBSA are powerful
tools in optimizing lead compounds because they can
quantitatively characterize the binding details (such as
analyzing critical interactions) of ligand−receptor sys-
tems.270,283−288 In drug−target interactions, it has been
suggested that the electrostatic interaction dominates the
non-covalent binding in molecular recognition.289 However,
this is not generally true, as it is well-known that shape
complementarity is also very important.290 Molecular recog-
nition can therefore be attributed to contributions from both
electrostatic and van der Waals interactions, solvation/
desolvation and entropy effects. With a computing framework
in hand, numerous studies have employed the MM/PB(GB)-
SA approaches to analyze the critical interactions in ligand−
receptor pairs.277,283−285,291 For example, by using MD
simulations and MM/GBSA free energy decomposition, Jiang
et al. analyzed the binding mechanism of known inhibitors
targeting Keap1285 and then designed a series of high-binding-
affinity inhibitors to disrupt the protein−protein interaction
between Keap1 and Nrf2 (a target that modulates many kinds
of cancers and other chronic diseases292,293). In the designed
inhibitors, one compound (compound 2) for the first time
reached single-digit-nanomolar activity (Kd = 3.59 nM) and
showed better pharmacological properties as well. Barril et al.
used molecular docking, MD simulations, and MM/PBSA
calculations to investigate the binding modes for agonists
targeting REV-ERBα/NCoR,294 and among the four tested
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compounds, three were validated with activities in their
experiments. Moreover, in Kocakaya’s work, MD simulations
were performed for PTP1B to reveal possible mechanisms of
ligand recognition and inhibition,295 and MM/GBSA free
energy decomposition was performed to give the detailed
binding mechanism. The energy decomposition analysis
suggested that potent and selective PTP1B inhibitors could
possibly be designed by targeting the surface residues. The
results were extremely consistent with the experimental
work,296 in which residues such as Arg47, Asp48, Val49,
Lys120, Ala217, Ile219, Gly220, Met258, and Thr263 had
been confirmed to play an important role in modulating the
activities. Besides, Mena-Ulecia et al. performed a compre-
hensive analysis of the binding specificity of 177 thrombin
inhibitors using a three-dimensional quantitative structure−
activity relationship (3D-QSAR) and end-point free energy
calculations.297 Through these analyses, they inferred the
effects of van der Waals contacts, electrostatic interactions, and
solvation on the effectiveness of thrombin inhibitors. In
addition, our group elucidated the binding mechanisms of
type-I1/2 ALK inhibitors using umbrella sampling (US)
simulations and MM/GBSA binding free energy decomposi-
tion analysis.298 We found that several residues in the hinge
region (Leu1122, Leu1198, Gly1202, and Glu1210) and the
allosteric pocket (Glu1197, Ile1171, Phe1174, Ile1179,
His1247, Ile1268, Asp1270, and Phe1271) of ALK play vital
roles in determining the relative binding strength of the studied
inhibitors. The above examples suggest that the MM/
PB(GB)SA methods are powerful tools in analyzing the vital
regions/residues for drug−target interactions, which have been
proven to provide important information for rational drug
design.
Moreover, with the capability of fast characterization of the

vital protein−ligand interactions, another highly useful
application of MM/PB(GB)SA is to analyze the drug
resistance mechanism, as they can provide more details on
the energetic difference between the wild-type and mutated
systems.288,291,299−305 By virtual mutagenesis technology, one
can explain how a specific mutation influences the binding of a
drug to its target since the drug-resistant mutants can usually
reduce the binding affinity of a drug to its target and/or change
the pocket conformation of the target.301,304,306−314 For
instance, numerous drug-resistant mutations have been
detected in ALK tyrosine kinase for nearly all of the launched
drugs.315−320 Using the MM/GBSA approach, a recent study
revealed that the L1198F mutation of ALK results in a
conformational change of the binding pocket and alters the
binding affinity of ALK to the launched drugs crizotinib and
lorlatinib,321 where the critical amino acids identified by MM/
GBSA free energy decomposition are in agreement with the
experimental results.319,322,323 Besides, Zhang’s group inves-
tigated the resistance mechanisms of ALK mutations (I1171N,
V1180L, and L1198F) to alectinib by means of MD
simulations and end-point binding free energy calculations.324

They presented a “key and lock” mechanism between the ethyl
group at position 9 of alectinib and a recognition cavity in the
hinge region of ALK to illustrate the major molecular origin of
drug resistance. Our group has also done several works to
analyze the crizotinib resistance mechanisms for ALK using the
end-point methods, including the effects of the C1156Y,
G1202R, R1152L, and S1206Y mutations, and the simulation
results show that both the entropy effect and long-range

indirect interactions can attenuate the binding of crizoti-
nib.307,325

Thanks to the theoretical analysis tools, many pioneering
works have successfully designed a number of antiresistant
inhibitors to overcome drug-resistant mutations, such as
L1196M, G1202R, C1156Y, etc. in ALK270,326−328 and
A421V, A156T, R155K, etc. in HCV,287,329 which is
encouraging for researches who want to use the end-point
binding free energy calculation approaches for rational
antiresistant drug design.

8. APPLICATIONS IN MACROMOLECULAR
INTERACTIONS

As powerful end-point binding free energy calculation tools,
MM/PBSA and MM/GBSA have also been widely used in
many other fields besides small-molecule drug design. For
example, a very useful application of MM/PB(GB)SA is to
predict the interactions between macromolecules, such as
p ro t e i n−p ro t e i n , 9 3 , 2 0 9 , 2 4 3 , 3 3 0− 3 3 5 p ro t e i n−pep -
tide,278,283,336−341 and protein−nucleic acid interac-
tions.100,239,342−352 At present, calculations of the absolute
binding free energies for these problems remain very
challenging for alchemical methods.

8.1. Applications in Protein−Protein Interactions

PPIs play crucial roles in most biological processes in living
cells,353−355 and numerous PPIs have been considered as
potential drug targets.356−358 The 3D structure of a protein−
protein complex can provide a global scope of how and where
one protein interacts with another. Nowadays, a variety of
experimental techniques have been developed to explore
whether there are interactions between two proteins.359

However, it is hard to determine how two proteins interact
through most of the biophysical and/or biochemical
techniques without detailed structural information.360−362

Although there are limitations, X-ray crystallography, cryogenic
electron microscopy (cryo-EM), and NMR techniques are able
to determine the native structure of a protein monomer or a
protein−protein complex at the atomic level,363 but solving the
high-resolution structures for all of the PPIs is a considerably
more difficult or even impossible task.364,365 Therefore,
computational methods have become alternatively popular to
explore the interactions between two proteins in a com-
plex.366,367

Protein−protein docking, which can predict the binding
affinities and binding modes between individual protein
structures, is a powerful approach to predict PPIs.368 In
principle, the stable conformation of a protein−protein
complex can be computationally determined to be the
structure with the minimum free energy on the potential
energy surface.359 To date, many efforts have been made to
develop protein−protein docking methods to determine and
analyze PPIs, though using just molecular docking techniques
to determine the energy minima from the huge conformational
space is arduous.359 In practice, two phases are included in
most protein−protein docking approaches: the docking phase
and the ranking phase. In the first phase, extensive
conformations are generated by molecular docking, and
potential binding poses (also called decoys) are sampled
from them. In the ranking stage, the decoys sampled during the
first stage are scored and ranked using diverse scoring
functions.368 To allow fast screening of large molecular
databases, a hierarchical scoring scheme is usually applied by
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using a coarse scoring function as a rapid filter of the entire
database in the initial docking phase and then using a more
rigorous but time-consuming scoring function to rescore the
top hits to produce the final ranked queries.257

For rescoring of macromolecule interactions, the MM/
PB(GB)SA methods are thought to be greatly effective
technologies since they often achieve a good balance between
computational speed and accuracy compared with the
alchemical methods (low in speed) and traditional molecular
docking scoring functions (low in accuracy).93,243,331 For
instance, Maffucci and Contini determined the relative binding
free energies for a data set of 20 protein−protein pairs using a
modified MM/PBSA approach (called Nwat-MM/PBSA)331

that explicitly incorporates the effects of water on the binding
of the protein−protein pairs, and significant improvement was
shown for the correlation between the predicted results and
the experimental data (r2 = 0.77, compared with 0.45 for the
traditional method). We also assessed the ability of MM/PBSA
and MM/GBSA to predict the binding affinities for 46
protein−protein complexes.93 Our results show that MM/
GBSA rescoring is better than ZDOCK scoring for differ-
entiating the correct binding structures from the decoys.
Therefore, considering the low computational cost and
relatively high prediction accuracy, MM/GBSA is potentially
an alternatively powerful tool to predict binding affinities and
identify correct binding structures for protein−protein systems.
Moreover, to understand the details of protein−protein

interactions, one can utilize sequence, structure, and energy-
based features to reveal the binding mechanisms, such as vital
residues, mutation effects, and hot spots.207,369,370 Petukh et al.
proposed a new method called SAAMBE that combines
structure minimization and a modified MM/PBSA approach to
estimate the effects of single and multiple mutations on
protein−protein binding and suggested a crucial role of the
water model and polar solvation energy in predicting the
binding affinity.371 The core of this modified MM/PBSA
method is to use a residue-specific dielectric constant protocol
to characterize the mutation effects, and it achieves a good
correlation (rP = 0.75) between the predictions and the
experimental data for 1300 mutations in 43 proteins. Besides,
alanine scanning, proposed by Massova and Kollman in
1999,372 is another useful technology to analyze hot spots for
PPIs. Combined with the MM/PB(GB)SA methods, this
technology has proven to be a very useful approach for
revealing specific features of protein−protein interactions, and
it has been successfully applied to insulin dimer,373 IGF-II/
IGF2R,374 Ras−Raf and Ras−RalGDS,72 etc. For example, the
hot spots in the IGF-II/IGF2R complex identified by MM/
PB(GB)SA-based alanine scanning374 are consistent with the
reported experimental mutagenesis data.375−378

Besides their applications in PPI predictions, the MM/
PB(GB)SA methods are usually used in studies of protein−
peptide interactions (PpIs), which is also a very important field
for molecular design since PpIs can mimic the interaction
patterns of protein−protein systems to regulate biological
processes.278,283,336−340 For example, using MD simulations
and MM/GBSA free energy analyses, Xu et al. studied the
binding pattern of an eight-residue peptide targeting TNKS
and subsequently designed several constrained peptide
inhibitors (called macrocyclized extended peptides) that can
effectively inhibit the biological activity of the target and
overcome the off-target phenomenon.283 Moreover, the above-
mentioned MIEC-SVM method proposed by our group has

been successfully used in many protein−peptide systems, such
as chromodomain-methyllysine-binding peptides,339 ABL1-
SH3-binding peptides,278,340,341 PKA-RIIα-binding pepti-
des,338 etc., where many predicted tight-binding peptides
have been validated by experimental assays.339−341

8.2. Applications in Protein−Nucleic Acid Interactions

Besides protein−protein/peptide interactions, protein−nucleic
acid (RNA/DNA) interactions also play crucial roles in many
biological processes, such as regulation of gene expression,
RNA splicing, protein synthesis, etc. Most RNAs function only
when in complex with specific proteins. Therefore, revealing
the specific protein−RNA recognitions and binding patterns is
crucial for both understanding the important processes of life
and designing new drugs.379 Partly because the existing scoring
functions for protein−RNA interactions (PRIs) are unreliable,
accurately predicting the 3D structures and binding affinities
for PRIs is still quite difficult. To solve this problem, the MM/
PB(GB)SA approaches have also been employed in studying
the PRIs.347,348,352 For instance, Orr et al. presented a
computational tool to accurately characterize the interactions
between proteins and RNA with post-transcriptional mod-
ifications,348 in which they used MM/GBSA to predict
whether an RNA modification is favorable for binding with
the target protein, and the predictions showed a very high
correlation with the experimental data (r2 > 0.9). Moreover, we
systemically investigated the performance of MM/PBSA and
MM/GBSA to predict the binding affinities and identify the
near-native binding structures for 148 protein−RNA systems
with different solvent models and solute dielectric constants.100

The results showed that MM/GBSA rescoring efficiently
improves the prediction capability of the scoring functions for
protein−RNA systems (rP = 0.58), especially for the binding
poses generated from ZDOCK_M, a modified ZDOCK
program.380

With regard to protein−DNA interactions (PDIs), several
recent theoretical works involving mechanistic analy-
ses350,351,381−383 and methodology development239,349 have
been reported. For example, Peng et al. developed a modified
MM/PBSA method to predict the binding free energy
difference arising from missense mutations to protein−DNA
complexes,239 and a high correlation coefficient (rP = 0.72) was
reached for the test set containing 105 mutations covering 13
protein−DNA systems. Moreover, combining fast side-chain
optimization algorithms and the MM/PBSA approach, Li’s
group developed a new algorithm called PremPDI to predict
the effects of missense mutations on the binding of protein−
DNA complexes.349 In a data set of 49 protein−DNA
complexes containing 219 mutations, they also achieved a
high Pearson correlation coefficient between the predicted
results and the experimental data (rP = 0.71). All of these
examples imply that the use of end-point binding free energy
calculation methods to predict macromolecule interactions is
feasible.
The ribosome is the place where protein synthesis occurs,

and in bacteria it consists of small (30S) and large (50S)
subunits with tens of proteins and a sequence of rRNAs.384,385

The synthesis of a protein starts with binding of an mRNA to
the ribosomal 30S subunit, and then in the elongation phase
the nascent peptide is extended with local folding from the
peptidyl transferase center (PTC) through an internal tunnel
into the large ribosomal 50S subunit.386,387 Finally, the nascent
peptide escapes from the tunnel and folds into its native

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.9b00055
Chem. Rev. XXXX, XXX, XXX−XXX

P

http://dx.doi.org/10.1021/acs.chemrev.9b00055


structure with the help of other factors.388 This process
involves multiple interactions, including the binding of
peptide/antibiotics to rRNAs or proteins.389−392 The MM/
PBSA method was first used to investigate the binding of
aminoglycoside derivatives to the A site of the ribosome, and
the predicted binding free energies were found to be in good
agreement with the experimental values.393 Moreover, MD
simulations suggested that additional stability to the bases
A1492 and A1493 in their extrahelical forms is provided by
well-designed compounds. A conformational transition in the
aminoacyl tRNA site of the bacterial ribosome both in the
absence and presence of an aminoglycoside antibiotic was
reported by Mobashery et al.394

9. QM IN MM/PB(GB)SA CALCULATIONS

Although the MM/PBSA and MM/GBSA methods have been
successfully applied to many problems, particularly in
estimating free energies for binding of small ligands (drug
candidates) to proteins, it is well-known that the MM energy
model has some limitations for accurate prediction of free
energy. Although sufficient sampling is required for suitable
convergence of free energy calculations, the results strongly
depend on the quality of the MM potential. For some
interesting systems, such as transition states and metal-binding
sites, the standard MM potentials may perform poorly. Hence,
it is desirable to utilize the more versatile QM approaches for
these systems.395−398 However, it remains true that the highest
levels of QM can be used only for reasonably modest system
sizes (tens of atoms).399 A number of general strategies have
been employed to further extend the size of systems to which
QM calculations can be applied. One of the most popular
approaches is to describe a subregion of interest via QM and
couple it to its larger environment modeled at the MM level
(so-called QM/MM simulation). The fragment molecular
orbital (FMO)400−402 method and linear scaling strat-
egies398,403 are usually used to increase the reach of QM
methods. Another useful strategy is to use a truncated system
for the QM calculation. It has been reported that the average
truncation error of QM calculations does not reach 1 kJ/mol
with the radius of the system truncated to 8.5 Å after the MD
simulation of the full-length protein system.404 Recently, the
adaptation of QM algorithms to utilization of GPU
architectures has also been reported.405

Nowadays, QM has been widely applied in the prediction of
protein−ligand docking,120,123,406−410 protein−ligand binding
affinities (scoring),411−415 and changes in ligand internal
energy upon binding (ligand strain).416−418 For example,
Raha and Merz used semiempirical QM to design a scoring
function (QMScore) and calculated the solvation free energies
and electrostatic interactions for a diverse set of 165 protein−
ligand complexes.411 They obtained encouraging results that
the square of the correlation coefficient between the predicted
and experimental values reached up to 0.55. Moreover,
comparison of QMScore with 11 other scoring functions for
a set of 56 protein−ligand complexes from Wang’s data set419

showed that QMScore gave the best performance. Wu et al.
studied the binding mechanism of L86 and T76 to human α-
thrombin using the molecular fractionation with conjugate
caps (MFCC) and MM/PBSA approaches, and the results
showed that the L86/T76-thrombin binding interactions given
by MFCC and MM/PBSA are consistent and in good
agreement with the experimental data.396

Ryde et al. proposed an approach to predict free energies of
reactions in proteins, called QM−MM/PBSA.395 In their
approach, the internal energy of the reactive site is calculated
via QM, while the internal interactions with the surrounding
protein are computed at the MM level. They found that QM−
MM/PBSA reproduced the results of a strict QM/MM FEP
method with a MAD of 8−10 kJ/mol if multiple frames
extracted from the MD trajectories were employed and 4−14
kJ/mol if a single QM/MM structure was employed. Sippl et
al. applied QM−MM/PBSA rescoring to search for novel
Myt1 kinase inhibitors.410 The QM−MM/GBSA scoring
performed better than docking scoring functions or MM/
PB(GB)SA in discriminating active from inactive compounds
and could be used on a data set with diverse scaffolds. More
recently, Mishra and Koca assessed the performance of the
MM/PBSA, MM/GBSA, and QM−MM/GBSA approaches on
protein−carbohydrate complexes.107 On the basis of the
GBHCT model and the PM6 or DFTB method, QM−MM/
GBSA resulted in a marginally improved agreement (r2 = 0.96)
with the experimental binding energies compared with MM/
PBSA with the mbondi radii set, indicating that the QM
Hamiltonian may have a notable impact on the QM−MM/
GBSA predictions. They suggested that PM6 may be more
suitable for virtual screening involving thousands of com-
pounds because the DFTB/SCC-DFTB calculations are
computationally much more demanding. In another work
based on 6 ns MD simulation trajectories together with
GBGBn2, PM3, and the mbondi2 radii set, QM−MM/GBSA
generated the best correlation with the experimental results (r2

= 0.88).87 However, inclusion of QM methods does not always
improve the prediction results of binding affinities and
sometimes can even lead to much worse predictions than
MM methods.188,415,420 Ryde et al. used this approach to
estimate the binding affinities of ligands to cathepsin B, and the
results indicated that the QM−MM/PBSA predictions (r2 =
0.59) were much worse than the predictions based only on gas-
phase QM energies (r2 = 0.80),421 whereas accurate QM−
MM/PBSA predictions were obtained for cytochrome
P450,422 highlighting the system dependence of QM−MM/
PB(GB)SA. Many more details are provided in the outstanding
review of the use of QM in the prediction of ligand binding
affinities.423

10. COMPARISON WITH OTHER PREDICTIVE
METHODS

The LIE method, another popular end-point approach, has
usually been used to compare with MM/PB(GB)SA in binding
free energy predictions,51,54,68,181,197 but it is difficult to
determine which one is more accurate. However, it seems that
the LIE approach is highly system-dependent.197 For example,
the standard LIE method yields no correlation for the CB8
systems but an excellent correlation for the α-CD systems.
Ryde et al. compared the computational efficiencies and
accuracies of LIE and MM/PBSA and found that LIE is 2−7
times more efficient than MM/PBSA in computational cost.68

The much more rigorous alchemical methods (such as FEP
and TI) have been compared with MM/PB(GB)SA. because
of the inherent limitations of the MM/PB(GB)SA approaches,
they are less accurate than the alchemical meth-
ods78,271,273,424,425 in many cases. However, in some cases,
the MM/PB(GB)SA methods give comparable182,426 or even
better427 predictions than the alchemical methods.
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Scoring functions are more computationally efficient and are
widely used in the early stage of virtual screening and
estimation of binding free energies of protein−ligand
interactions. Generally, however, the classical scoring functions
are inherently inaccurate. For example, we evaluated the
performance of MM/PB(GB)SA to predict the binding free
energies and identify the correct binding conformations for 98
protein−ligand complexes, and the results showed that MM/
GBSA performed better than almost all of the scoring
functions in molecular docking to identify the correct binding
structures and rank the binding affinities for the tested
protein−ligand systems.101 Another comparative evaluation
study reported by Obiol-Pardo and Rubio-Martinez428

suggested that compared with XScore,429 MM/PBSA
performed better in identifying small differences upon ligand
binding for seven XIAP−peptide complexes. In recent years,
machine-learning scoring functions for molecular docking have
rapidly developed,430−434 but reviewing the advances of
machine learning in drug design and PPIs is beyond the
scope of this review.

11. CONCLUDING REMARKS
Free energy calculations offer an estimation of the energy
differences between thermodynamic processes given a series of
specific parameters and physical hypotheses. A good free
energy estimation approach aims to achieve convergence to a
unique value solely determined by the free energy model (such
as MM/PBSA or MM/GBSA) itself. This unique value is
called the “correct” free energy of a given molecular system for
the model. A free energy model can be improved by adjusting
the employed parameters to reproduce the experimental data.
It is critical to apply the “correct” free energies in the fitting
procedure, and care must be taken to avoid overfitting.
MM/PB(GB)SA calculations are popular because they

provide a good balance between computational speed and
accuracy. The performance of the predictions depends on both
the sampling accuracy of the entire conformation space and the
quality of the free energy model. To obtain the “correct” free
energy for a molecular system with MM/PB(GB)SA
calculations, many independent simulations for sampling may
be necessary to achieve reasonable convergence. In practice,
however, the MM/PB(GB)SA free energies may deviate away
from the “correct” values because of inadequate conforma-
tional sampling, leading to a poor MAD even though the
relative free energies measured by r2 are still satisfactory. An
MM/PB(GB)SA model is a combination of functional forms
for different energy terms and the associated parameters, such
as the force fields for molecular mechanics energies and the
solute dielectric constants and atomic radii for solvation free
energies calculated with the PB/GB theories. These parameters
fundamentally affect the predictive accuracy of various energy
terms.
The solvation free energy is a pivotal term since the solvent

effect plays a key role in protein−protein/ligand binding,
protein tertiary structure formation, and execution of protein
functions. Thus, an accurate treatment of the solvation term is
fundamental to compute binding free energies. The polar
contribution of the solvation free energy is predicted by solving
the PBE. Unfortunately, PBE solvers do not converge with
respect to the numerical grid used, except for MIBPB.
Theoretically, the PB method for solving the PBE is more
accurate than GB. However, the GB model has gained
popularity because of its favorable computational speed and

comparable or even better accuracy compared with the PB
method. The dielectric constant strongly impacts the
prediction of the polar solvation free energy, and the variable
dielectric model illustrates potential power. The nonpolar
contribution of solvation free energy is represented by a linear
relation to the SASA. To our knowledge, in recent years
nonpolar solvation energy predictions have become less
attractive, and we hope that many efforts will be made in the
future.
It is noted that the MM/PB(GB)SA free energy model may

be unable to perform well when a binding site involves a highly
charged environment, for which an accurate treatment of
electrostatic interactions is crucial for binding free energy
calculations. The calculation uncertainty increases with the
polarity of the studied compounds, especially when polar
compounds bind to a binding pocket formed by highly charged
residues located in the interior of a biomacromolecule.
Furthermore, the contribution of structural water molecules
residing inside or around the binding pocket cannot be taken
into account well in binding free energy calculations with
implicit solvation models. Explicit consideration of such water
molecules in free energy calculations may significantly improve
the accuracy of an MM/PB(GB)SA model. Another main
source of error for MM/PB(GB)SA free energy models is the
conformational entropies, which are typically estimated by
performing NMA. As the anharmonic contribution is neglected
in NMA, the conformational entropies obtained using NMA
may have systematic errors for some molecular systems. A
universally accurate and reliable solution is currently out of
reach, and innovative methods are much needed.
Using the PB method to calculate the electrostatics of large

systems in high-throughput virtual screening requires large
computational resources, including computing time and
memory. Therefore, it is necessary to speed up PB calculations
via parallelization on multiple CPUs or GPU acceleration.
Nevertheless, MM/PBSA and MM/GBSA perform better in
determining relative free energies and can be used for
postprocessing of docked structures or to rationalize observed
differences. However, they cannot serve as a basis for
developing more accurate methods and predict true drug
candidates in drug design without experimental verification
because of their relatively limited accuracy (compared with
FEP and TI). Despite this, the end-point free energy
techniques are expected to play a more and more important
role in detailed energetic investigations of complex formation
as the MM/PB(GB)SA free energy models are continually
improved in the future.
Lastly, it is worth mentioning that machine learning and

mathematical methods, especially the former, have gained
much popularity recently. However, it is beyond the scope of
the current review to discuss these methods here.
Critical Analysis and Remaining Challenges: With the

well-defined algorithms and good balance between computa-
tional efficiency and prediction accuracy, MM/PBSA and
MM/GBSA have been regarded as competitive methods in the
field of binding free energy calculations, and they have been
successfully applied in many aspects of drug design, including
structure-based virtual screening, lead optimization, and
molecular recognition. However, their computational efficiency
is achieved by introducing controversial approximations to
both the sampling and energy calculation phases, such as using
a uniform dielectric constant for the whole solute surrounded
by a complicated local microenvironment, ignoring or
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improperly treating ions and critical water molecules in the
binding site, ignoring or applying oversimplified methods to
estimate conformational and solvation entropies, etc. For-
tunately, the performance of MM/PBSA and MM/GBSA can
be further improved by taking some remedial measures and
introducing new techniques to them. First, MM/GBSA based
on a variable dielectric model, in which variable dielectric
constants are assigned to different residues in a protein−
protein/ligand complex, could be a good idea. As a matter of
fact, we believe that the variable dielectric model is one of the
most promising ways to make a breakthrough in the two end-
point free energy methods. Second, the implementation of
MM/PB(GB)SA on GPUs will greatly accelerate the sampling
and energy calculations. Moreover, artificial intelligence, from
artificial neural networks to deep learning, may find great
applications in MM/PB(GB)SA-based binding free energy
calculation and structure prediction in the coming years,
especially when big data of high-quality experimental structures
and binding data become available.
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